MedUniver Физиология человека
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Физиология человека:
Физиология
Физиология клетки
Эндокринная система
Пищеварительная система
Физиология клеток крови
Обмен веществ. Питание
Выделение.Функции почек
Репродуктивная функция
Сенсорные системы
Физиология иммунной системы
Система кровообращения
Дыхательная система
Видео по физиологии
Книги по физиологии
Рекомендуем:
Книги по медицине
Видео по медицине
Фотографии по медицине
Консультации врачей
Форум
 
Оглавление темы "Рефрактерные периоды. Токи через потенциалзависимые мембранные каналы. Электротон и стимул.":
1. Рефрактерные периоды. Относительный рефрактерный период. Абсолютный рефрактерный период.
2. Ионные токи во время следовых потенциалов
3. «Стабилизирующее» влияние ионов кальция (Ca) на потенциал покоя.
4. Токи через потенциалзависимые мембранные каналы. Локальная фиксация потенциала мембраны.
5. Токи через одиночные натриевые (Na) - каналы.
6. Токи через одиночные калиевые (К) - каналы.
7. Токи через одиночные кальциевые (Ca) каналы.я.
8. Молекулы натриевого (Na)-канала. Воротные токи. Избирательность натриевых каналов.
9. Электротон и стимул. Стимуляция и раздражение. Электротон в случае равномерного распределения тока.
10. Электротон в клетках вытянутой формы.

Токи через одиночные калиевые (К) - каналы.

Токи через одиночные натриевые (Na) - каналы.
Рис. 2.12. Токи через натриевые (слева) и калиевые (справа) каналы (схематическое изображение). С помощью локальной фиксации потенциала производили сдвиг потенциала длительностью 14 мс от —80 до —40 мВ (черная линия); ниже показаны мембранные токи, зарегистрированные при нескольких таких последовательных сдвигах потенциала. Во время деполяризации токи одиночного канала могут возникать в любой момент, причем длительность их варьирует. При объединении многих записей токов в условиях синхронизации скачков потенциала получаются суммарные кривые токов, показанные вверху красным (lNa и lK). Временной ход lNa свидетельствует о том, что вероятность открывания Na+ -каналов наиболее высока вскоре после скачка потенциала, а примерно через 1 мс эти каналы открываются все реже и в конце концов инактивируются. Большая часть К+-каналов открывается с некоторой задержкой после скачка потенциала, затем средняя частота открываний остается на постоянном уровне в течение всего периода деполяризации.
Токи через одиночные натриевые (Na) - каналы.
Рис. 2.13. Модель состояний Na+-каналов. «Закрытое, способное к активации» состояние при деполяризации может преобразовываться в «открытое активированное» или «закрытое инактивированное» состояние. Когда канал находится в «открытом активированном» состоянии, стойкая деполяризация способствует переходу в «закрытое инактивированное» состояние. Возвращение канала в «закрытое, способное к активации» состояние может происходить только в результате реполяризации. (Более реальная модель включает последовательно 3 «закрытых, способных к активации» и 4 «закрытых инак-тивированных» состояния [8].)

На рис. 2.12 справа схематически представлены токи одиночных К+-каналов, аналогично токам Na+-каналов (см. слева). Импульсы тока тоже имеют маленькую амплитуду (всего лишь +2 пА), а продолжительность открытого состояния канала варьирует вблизи среднего значения 5 мс. Однако в период открытого состояния К+-канал часто на короткое время закрывается, т. е. происходят быстрые осцилляции между открытым и закрытым состояниями. Такие «вспышки» открываний наблюдаются для многих типов каналов. В отличие от Na+-канала, К+-канал не инактивируется во время деполяризации; пока продолжается деполяризация, индивидуальные каналы непрерывно открываются и закрываются. В соответствии с этим, при суммации отведений получается кривая К+-тока, которая нарастает до стационарного уровня. Таким образом, описывая поведение токов К+-каналов с помощью модели, представленной на рис. 2.13, следует отметить, что инактивированное состояние в данном случае отсутствует, но наблюдаются два последовательных закрытых состояния, которые обеспечивают прерывистый характер вспышек [34] (см. Са2+-канал).

Натрий (Na) и калиевая (K) проводимость во время потенциала действия.
Рис. 2.6. А и В Мембранные токи в миелинизированных аксонах лягушки (перехваты Ранвье; 11 13 С) после ступенчатых сдвигов мембранного потенциала. Мембранный потенциал поддерживался с помощью фиксации потенциала на уровне потенциала покоя, равного —95 мВ; в момент времени 0 мс мембранный потенциал скачком поднимали до значений, которые указаны справа около записей тока, от —60 до +60 мВ. Сопровождающие скачок потенциала кратковременные емкостные токи вычитались, поэтому регистрируемые токи являются ионными токами. При —60 мВ скачок потенциала остается подпороговым и не вызывает изменений тока. По мере увеличения скачков потенциала сначала возникают отрицательные токи, которые с увеличением потенциала становятся положительными. Б. То же, что на рис. А, но на фоне блокады калиевых токов ТЭА (6 мМ), в результате чего токи почти полностью обеспечиваются ионами Na+. Полярность Na-токов меняется с отрицательной на положительную между значениями +30 и +60 мВ; по мере увеличения деполяризации продолжительность Na - токов уменьшается. Г. То же, что на рис. В. но на фоне блокады натриевых токов тетродотоксином (0,3 мкМ), так что записи соответствуют калиевым токам. При деполяризации К+-токи нарастают медленнее, чем Na - токи, и продолжаются в течение всего периода деполяризации (по [3] с изменениями)

Рис. 2.12 отражает поведение К+-каналов, типичное для нервных волокон: задержанное нарастание суммарного тока при деполяризации, заметное повышение проводимости во время деполяризации от потенциала покоя и отсутствие инактивации (ср. рис. 2.6). Обнаружено по крайней мере пять других типов К+-каналов. Они различаются, например, соотношением между открыванием канала и потенциалом мембраны, характеристиками инактивации или же зависимостью не только от деполяризации, но и от внутриклеточной концентрации Са2+. Эти типы К+-каналов обнаружены в клетках различных типов или частях клетки и присутствуют либо по отдельности, либо в виде определенных сочетаний. Именно разнообразие К+-ка-налов обусловливает вариации формы потенциалов действия, а также различную скорость реполяриза-ции и особенности следовых потенциалов (см. рис. 2.4). Существует яркий контраст между многообразием К+-каналов и одновременно Nа+-каналов, которые в возбудимых клетках животных всех типов быстро активируются деполяризацией, а затем быстро инактивируются.

Потенциал действия. Временной ход потенциала действия. Реполяризация.
Рис. 2.4. Схематическое изображение потенциалов действия в различных тканях млекопитающих. Ордината: амплитуда внутриклеточного мембранного потенциала; абсцисса: время после начала потенциала действия. Временная шкала для каждого потенциала действия различна

- Читать далее "Токи через одиночные кальциевые (Ca) каналы."

Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта