MedUniver Физиология человека
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Физиология человека:
Физиология
Физиология клетки
Эндокринная система
Пищеварительная система
Физиология клеток крови
Обмен веществ. Питание
Выделение.Функции почек
Репродуктивная функция
Сенсорные системы
Физиология иммунной системы
Система кровообращения
Дыхательная система
Видео по физиологии
Книги по физиологии
Рекомендуем:
Книги по медицине
Видео по медицине
Фотографии по медицине
Консультации врачей
Форум
 
Оглавление темы "Рефрактерные периоды. Токи через потенциалзависимые мембранные каналы. Электротон и стимул.":
1. Рефрактерные периоды. Относительный рефрактерный период. Абсолютный рефрактерный период.
2. Ионные токи во время следовых потенциалов
3. «Стабилизирующее» влияние ионов кальция (Ca) на потенциал покоя.
4. Токи через потенциалзависимые мембранные каналы. Локальная фиксация потенциала мембраны.
5. Токи через одиночные натриевые (Na) - каналы.
6. Токи через одиночные калиевые (К) - каналы.
7. Токи через одиночные кальциевые (Ca) каналы.я.
8. Молекулы натриевого (Na)-канала. Воротные токи. Избирательность натриевых каналов.
9. Электротон и стимул. Стимуляция и раздражение. Электротон в случае равномерного распределения тока.
10. Электротон в клетках вытянутой формы.

Токи через одиночные натриевые (Na) - каналы.

Токи через одиночные натриевые (Na) - каналы.
Рис. 2.11. Схема локальной фиксации мембранного потенциала («пэтч-кламп»). Изображен продольный срез через регистрирующую микропипетку (обозначена черным цветом) с диаметром контактирующего с мембраной кончика ~1 мкм. Если кончик электрода абсолютно чист и поверхность клетки освобождена от волокон соединительной ткани, то при подаче через пипетку отрицательного давления образуется тесный контакт, который создает электрическую изоляцию каналов находящегося в кончике пипетки микроучастка мембраны от остальной мембраны клетки (вставка). Таким способом можно регистрировать токи каналов с помощью усилителя обратной связи, соединенного с раствором электролита в пипетке (по [12, 24] с изменениями)

Токи через микроучасток мембраны, процедура регистрации которых показана на рис. 2.11, схематически представлены на рис. 2.12. Слева приведены 10 записей Na+-токa, при каждой из которых мембрана была деполяризована на период 14 мс. В каждом случае наблюдается только единственный короткий импульс тока с амплитудой —1,6 пА; это ток, протекающий через одиночную белковую молекулу Na+-канала. Длительность импульсов тока, которая соответствует времени открытого состояния канала, значительно варьирует около среднего значения 0,7 мс. Моменты открывания также варьируют, но при суммировании многих одиночных отведений получается результирующий временной ход тока, который на рис. 2.12 вверху слева изображен под записью скачка потенциала. Судя по записи временного хода тока, вероятность открывания канала резко возрастает при деполяризации, достигает максимума через 1,5 мс, затем снижается и становится минимальной через 10 мс после скачка деполяризации. Такое уменьшение вероятности открывания канала после деполяризации соответствует инактивации суммарного Na+-тока [8, 31].

Токи через одиночные натриевые (Na) - каналы.
Рис. 2.12. Токи через натриевые (слева) и калиевые (справа) каналы (схематическое изображение). С помощью локальной фиксации потенциала производили сдвиг потенциала длительностью 14 мс от —80 до —40 мВ (черная линия); ниже показаны мембранные токи, зарегистрированные при нескольких таких последовательных сдвигах потенциала. Во время деполяризации токи одиночного канала могут возникать в любой момент, причем длительность их варьирует. При объединении многих записей токов в условиях синхронизации скачков потенциала получаются суммарные кривые токов, показанные вверху красным (lNa и lK). Временной ход lNa свидетельствует о том, что вероятность открывания Na+ -каналов наиболее высока вскоре после скачка потенциала, а примерно через 1 мс эти каналы открываются все реже и в конце концов инактивируются. Большая часть К+-каналов открывается с некоторой задержкой после скачка потенциала, затем средняя частота открываний остается на постоянном уровне в течение всего периода деполяризации.
Токи через одиночные натриевые (Na) - каналы.
Рис. 2.13. Модель состояний Na+-каналов. «Закрытое, способное к активации» состояние при деполяризации может преобразовываться в «открытое активированное» или «закрытое инактивированное» состояние. Когда канал находится в «открытом активированном» состоянии, стойкая деполяризация способствует переходу в «закрытое инактивированное» состояние. Возвращение канала в «закрытое, способное к активации» состояние может происходить только в результате реполяризации. (Более реальная модель включает последовательно 3 «закрытых, способных к активации» и 4 «закрытых инак-тивированных» состояния [8].)

Отсюда следует, что открывание Na+-каналов при деполяризации не является строго детерминированным процессом; скорее происходит повышение вероятности открывания канала, а после того как он открылся, существует определенная вероятность, что он снова закроется. Таким «стохастическим» поведением обладают химические реакции, так что различные состояния каналазакрытое, но способное к активации», «открытое» и «закрытое инактивированное» (неспособное к активации) можно связать между собой посредством постоянных скорости, как и в случае химических реакций. Простейшая модель поведения Na+-канала включает эти три состояния (рис. 2.13). Переход от закрытого и способного к активации в открытое состояние обеспечивается деполяризацией. Однако деполяризация ускоряет также и переход в инактивированное состояние, поэтому открытый канал подвергается быстрой инактивации и остается инактивированным, пока в результате ре- или гиперполяризации мембраны не вернется в закрытое, но способное к активации состояние. Равновесие между закрытым, но способным к активации и закрытым инактивированным состояниями тоже устанавливается посредством мембранного потенциала; это соотношение проявляется в виде зависимости от исходного потенциала способности Na+-токa к активации (рис. 2.8)

Инактивация натриевого (Nа) - тока.
Рис. 2.8. Потенциал зависимая инактивация натриевой (Na)-системы. По оси абсцисс отложены величины отклонения мембранного потенциала от потенциала покоя ( — 60 мВ). От каждого из этих исходных значений потенциала мембрану деполяризовали до —16 мВ и по оси ординат откладывали отношения возникающих максимальных натриевых (Na+) -токов (lNamax) к величине lNamax, соответствующей полной активации натриевой (Na)-системы (по [15] с изменениями)

- Читать далее "Токи через одиночные калиевые (К) - каналы."

Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта