MedUniver Физиология человека
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Физиология человека:
Физиология
Физиология клетки
Эндокринная система
Пищеварительная система
Физиология клеток крови
Обмен веществ. Питание
Выделение.Функции почек
Репродуктивная функция
Сенсорные системы
Физиология иммунной системы
Система кровообращения
Дыхательная система
Видео по физиологии
Книги по физиологии
Рекомендуем:
Книги по медицине
Видео по медицине
Фотографии по медицине
Консультации врачей
Форум
 
Оглавление темы "Рефрактерные периоды. Токи через потенциалзависимые мембранные каналы. Электротон и стимул.":
1. Рефрактерные периоды. Относительный рефрактерный период. Абсолютный рефрактерный период.
2. Ионные токи во время следовых потенциалов
3. «Стабилизирующее» влияние ионов кальция (Ca) на потенциал покоя.
4. Токи через потенциалзависимые мембранные каналы. Локальная фиксация потенциала мембраны.
5. Токи через одиночные натриевые (Na) - каналы.
6. Токи через одиночные калиевые (К) - каналы.
7. Токи через одиночные кальциевые (Ca) каналы.я.
8. Молекулы натриевого (Na)-канала. Воротные токи. Избирательность натриевых каналов.
9. Электротон и стимул. Стимуляция и раздражение. Электротон в случае равномерного распределения тока.
10. Электротон в клетках вытянутой формы.

Электротон в клетках вытянутой формы.

Электротон и стимул. Стимуляция и раздражение.
Рис. 2.16. А, Б. Электротонический потенциал в клетке сферической формы. А. Внутриклеточные электроды служат для регистрации мембранного потенциала Е и пропускания тока I, распределение которого показано красными стрелками. Б. Временной ход импульса тока и одновременно регистрируемого электротонического потенциала в клетке. Постоянная времени т электротонического потенциала определяется временем, в течение которого потенциал доходит до уровня, достигающего 37% (1/е) его конечной амплитуды

Почти все нервные и мышечные клетки имеют большую длину по сравнению с их диаметром; так, нервное волокно может быть длиной до 1 м при диаметре всего около 1 мкм. Выходя из такой клетки, пропускаемый через нее ток будет распределяться очень неравномерно, т.е. ситуация будет сильно отличаться от представленной на рис. 2.16. Электротонические потенциалы в имеющем вытянутую форму мышечном волокне в месте пропускания тока (Е0) и на расстоянии 2,5 и 5 мм (Е2,5 и Е5). Эти кривые отличаются по форме от изображенных на рис. 2.16; они не описываются простой экспонентой и зависят от расстояния. Е0 в месте пропускания тока нарастает очень быстро, так что через промежуток времени, соответствующий постоянной времени т, он не превышает 16% от своего конечного уровня (вместо 37% на рис. 2.16). Более крутое нарастание обусловлено неравномерным распределением тока; сначала мембранный конденсатор разряжается в небольшом участке около источника тока, и только после этого ток начинает проходить внутри клетки, которая имеет значительное продольное сопротивление, к более удаленным участкам мембраны. Здесь мембранный конденсатор должен снова разрядиться, прежде чем начнет протекать ток, так что по мере увеличения расстояния от источника тока временной ход электротонического потенциала постепенно замедляется. На рис. 2.17 электротонический потенциал на расстоянии 5 мм от токового электрода (Е5) возникает с заметной задержкой и даже через 120 мс не достигает своего конечного уровня Еmax [17].

Электротон в клетках вытянутой формы.
Рис. 2.17. Электротонические потенциалы в клетке вытянутой формы. Вверху: инъекция тока 2 в мышечную клетку; электротонические потенциалы регистрируются на расстояниях 0; 2,5 и Б мм. В середине: временной ход электротонических потенциалов при этих трех расстояниях; в каждом случае потенциал достигает разного конечного уровня Еmax. Внизу: зависимость Еmax( от расстояния до места инъекции тока. Постоянная длины мембраны лямбда равна расстоянию, при котором Еmax падает до уровня 37% (1/е) амплитуды в месте пропускания тока

Даже в том случае, если пропускаемый ток идет так долго, что происходит перераспределение заряда, через мембрану около точки введения токового электрода протекает более значительный ток, чем на расстоянии, поскольку в более удаленных точках ток должен преодолеть не только сопротивление мембраны, но также продольное сопротивление внутренней среды клетки. Конечный уровень электротонического потенциала Еmax в зависимости от расстояния от токового электрода показан на нижнем графике рис. 2.17. Еmax экспоненциально падает с расстоянием х, причем экспоненциальный показатель равен — х/лямбда. Величина лямбда называется постоянной длиной мембраны; на рис. 2.17 она равна 2,5 мм, а в других клетках колеблется в пределах от 0,1 до 5 мм. Постоянная длины X служит мерой расстояния, на которое электротонические потенциалы могут распространяться в клетках вытянутой формы. Например, на расстоянии 4лямбда амплитуда электротонического потенциала составляет только 2% от его амплитуды у точки пропускания тока; следовательно, электротонические потенциалы в нерве можно зарегистрировать на расстоянии не более нескольких сантиметров от места их возникновения.

Следует еще раз подчеркнуть, что такое рассуждение относительно эффектов пропускаемого тока справедливо лишь для столь малых сдвигов потенциала, которые не изменяют ионную проводимость мембраны, т.е. наличие электротонических потенциалов подразумевает пассивное поведение мембраны. Поэтому при изменении полярности пропускаемого тока возникает электротонический потенциал, который соответствует зеркальному отражению прежнего потенциала.

- Вернуться в оглавление раздела "Физиология человека."

Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта