МедУнивер - MedUniver.com Все разделы сайта Видео по медицине Книги по медицине Форум консультаций врачей  
Рекомендуем:
Кардиология:
Кардиология
Основы кардиологии
Аритмии сердца
Артериальная гипертензия - гипертония
ВСД. Нейроциркуляторная дистония
Детская кардиология
Сердечная недостаточность
Инфаркт миокарда
Ишемическая болезнь сердца
Инфекционные болезни сердца
Кардиомиопатии
Болезни перикарда
Фонокардиография - ФКГ
Электрокардиография - ЭКГ
ЭхоКС (ЭхоКГ, УЗИ сердца)
Бесплатно книги по кардиологии
Пороки сердца:
Врожденные пороки сердца
Приобретенные пороки сердца
Форум
 

Ламинарный и турбулентный поток в эхокардиографии (ЭхоКГ)

а) Характеристики потока. При низких скоростях обычно наблюдается ламинарное течение крови. Это означает, что в близко расположенных точках поперечного сечения сосуда или клапанного отверстия скорости движения крови мало отличаются друг от друга. В этих случаях поток крови «хорошо организован»: в середине потока кровь течет с большей скоростью, а на периферии возле стенок сосуда или сердца скорость потока меньше. В сосудах возникает «параболический» профиль скоростей движения жидкости.

Начиная с определенного отношения поперечного сечения потока, скорости движения, а также плотности и вязкости крови характеристики потока меняются на «турбулентные»: профиль скоростей движения жидкости становится более плоским, сопротивление потоку растет и «частицы» жидкости попадают в вихревые движения. Вместо хорошо организованного ламинарного распределения скоростей получается вихреобразование и перемешивание частиц жидкости с различной скоростью и направлением движения. Кинетическая энергия необратимо теряется из-за вязкого трения и, в конечном итоге, превращения в теплоту. Движение частиц можно представить как сумму «хаотичного», турбулентного компонента скорости и относительно постоянного компонента скорости вдоль основного направления потока.

В сумме усредненные по времени, быстро меняющиеся векторы турбулентного компонента взаимно уничтожаются, тогда как постоянный компонент обусловливает движение в сосуде вдоль основного направления потока.

Применение теоремы сохранения энергии: расчет градиентов по скоростям движения крови в эхокардиографии (ЭхоКГ)
Поток через место сужения (стеноз).
Применение уравнения Бернулли представлено в тексте. Следует обратить внимание на возникновение турбулентностей (Т) непосредственно за местом стеноза.
До стеноза и вплоть до клиновидного ядра потока после стеноза течение жидкости ламинарно, пока не «уничтожается» множеством завихрений.

б) Число Рейнольдса. Переход от ламинарного течения к турбулентному можно представить себе как следствие преобладания инерционных сил потока над вязким сопротивлением, например, из-за возрастающей скорости движения жидкости. Точка такого перехода зависит от многих отдельных факторов, однако приблизительно ее можно представить в виде безразмерного числа Рейнольдса:

2r • v • ρ/η,

где r - радиус потока, v - средняя скорость движения жидкости, ρ - плотность и η - вязкость жидкости. Поток становится турбулентным, если это число превышает пограничное значение, приблизительно равное 2300.

в) Появление турбулентных потоков. В покое на нормальных сердечных клапанах турбулентные потоки не возникают, однако они появляются в области стенозированных клапанных отверстий или в области регургитации, а также других потоков с высокой скоростью движения, например, при дефекте межжелудочковой перегородки. При переходе от ламинарного потока к турбулентному в одном сосуде исходный параболический профиль скоростей уплощается, а сопротивление увеличивается (в противоположность уравнению Хагена-Пуазейля при турбулентном движении сопротивление возрастает не линейно, а пропорционально квадрату потока).

г) Локализация. Переход в турбулентное движение в области измененного просвета клапанных отверстий (стеноза, недостаточности) или дефектов межжелудочковой или межпредсердной перегородки происходит вскоре после места сужения потока. Непосредственно после прохождения через место сужения поток еще сохраняет ламинарное ядро, имеющее максимальную исходную скорость. Это ядро разрушается со всех сторон увеличивающимися турбулентными завихрениями. Приблизительно через 5 диаметров того отверстия, где был сужен поток, движение полностью становится турбулентным, и его максимальная осевая скорость теперь обратно пропорциональна расстоянию от места сужения.

Ламинарный и турбулентный поток в эхокардиографии (ЭхоКГ)
Двумерное моментное изображение потока через суженное отверстие («струя»), зарегистрированное при помощи лазерной допплеровской анемометрии (метод измерения скорости с помощью лазера):
а. Струя возникает в отверстии диаметром 5,8 мм. Ее максимальная скорость составляет 4 м/с. Распределение скоростей жидкости в камере после отверстия изображено цветом (см. шкалу). По оси х отложено расстояние от отверстия вдоль направления движения жидкости, по оси у - перпендикулярное направление (в миллиметрах).
б. Снижение максимальной локальной скорости в зависимости от аксиального расстояния от отверстия. На обоих рисунках видно, что максимальная скорость в центральном ядре струи сохраняется вплоть до расстояния приблизительно 20 мм от отверстия. Затем турбулентные завихрения разрушают ядро, и максимальная скорость гиперболически снижается, в. Симуляция изображения в режиме цветового допплеровского сканирования, соответствующего рисунку а. Из-за искажения сигнала (предел Найквиста был принят равным 1 м/с) изображение центрального ядра невозможно.

д) Мозаичность. В режиме цветовой допплерографии турбулентный поток представлен интенсивной, светлой, разноцветной струей («мозаичность»), В связи с характеристиками турбулентного потока при высоких скоростях, например, в случае аортального стеноза, максимально острый угол между основным направлением движения крови и ультразвуковым лучом при непрерывноволновом допплеровском исследовании менее критичен, чем в случае ламинарного потока, так как высокие скорости направлены в пространстве во все стороны и поэтому могут быть зарегистрированы. Следует учитывать, что принцип непрерывности и уравнение Бернулли справедливы независимо от ламинарности или турбулентности потока.

е) Другие подходы для количественной оценки потока и его сужений. Vena contracta. Из-за вышеописанных трудностей количественной оценки потоков по величине струи в цветовой допплерографии были предприняты другие попытки количественного анализа потока крови. Одна из них использует диаметр или сечение струи в самом узком месте, т.е. непосредственно после места сужения потока. Там поток конвергирует в самом узком месте, называемом vena contracta. Это самое узкое место соответствует эффективному сечению стеноза или регургитации и всегда меньше, чем анатомический размер отверстия. Его величина задается геометрией поперечного сечения потока и в физиологических условиях почти не зависит от скорости потока или градиента давления по обе стороны сужения.

Конечно, применение этой теоретически очень привлекательной концепции лимитировано разрешающей способностью и техническими факторами режима цветного допплеровского исследования. Однако он успешно валидирован прежде всего для расчета регургитации и (в меньшей степени) для случая митрального стеноза.

Применение теоремы сохранения массы к случаям сужения поперечного сечения потока в эхокардиографии (ЭхоКГ)
Двумерная схема взаимосвязи между эффективной площадью раскрытия клапана (Aeff) и геометрической, или анатомической, площадью раскрытия (Аgeo) (вертикальные стрелки) при внезапном сужении поперечного сечения потока. Проходящие в горизонтальном направлении стрелки символизируют линии потока.
Непосредственно после места сужения линии потока конвергируют, образуя самое узкое место потока Аeff. Коэффициент контракции С отражает соотношение между геометрической и эффективной площадью раскрытия.

- Также рекомендуем "Биоэффекты и безопасность ультразвука"

Редактор: Искандер Милевски. Дата публикации: 17.12.2019

Медунивер Мы в Telegram Мы в YouTube Мы в VK Форум консультаций врачей Контакты, реклама
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.