МедУнивер - MedUniver.com Все разделы сайта Видео по медицине Книги по медицине Форум консультаций врачей  
Рекомендуем:
Фармакология:
Фармакология
Основа фармакологии
Лекарства влияющие на нервную систему
Лекарства влияющие на кровь
Гормоны
Лекарства влияющие на сердце и сосуды
Лекарства влияющие на легкие
Лекарства влияющие на желудок и кишечник
Лекарства при нарушении питания
Лекарства влияющие на кости и мышцы
Лекарства влияющие на почки
Лекарства влияющие на мочеиспускание
Лекарства влияющие на кожу
Лекарства влияющие на зрение
Лекарства влияющие на ухо
Лекарства в интенсивной терапии
Лекарства в стоматологии
Лекарства при инфекциях
Лекарства при опухолях
Форум
 

Карбоангидраза. Сокращение гладких мышц и сетчатка

Карбоангидраза — фермент, играющий важную роль в образовании внутриглазной жидкости.
Фермент карбоангидраза играет важную роль в образовании внутриглазной жидкости. Его действие в органах зрения подобно его действию в почках или в других органах, где образуются тканевые жидкости. Ионный состав внутриглазной жидкости похож на состав плазмы крови, но содержание белка (10 мг/100 мл) намного ниже, чем в плазме (6000 мг/100 мл). Из-за низкого содержания белка внутриглазная жидкость прозрачна. Внутриглазная жидкость не является ультрафильтратом плазмы, на что указывает более высокое содержание в ней бикарбонатов и аскорбиновой кислоты. Это различие в составе предполагает, что внутриглазная жидкость образуется за счет более активных, чем фильтрация, процессов. Этот факт является важным для понимания того, как ингибиторы карбо-ангидразы уменьшают производство внутриглазной жидкости.

Сокращение гладких мышц — важный элемент физиологической регуляции глаза. Расширение и сужение зрачка, тонус кровеносных сосудов и ресничной мышцы зависят от сокращения гладких мышц. Эти процессы регулируются разными отделами вегетативной нервной системы, использующей различные медиаторы и рецепторы. И а1, и М3-рецепторы активируют G-белки, которые, в свою очередь, активируют фермент фосфолипазу С для сокращения гладких мышц.

Сетчатка преобразует свет в электрические импульсы нервных клеток. Сетчатка является частью эмбриональной центральной нервной системы, поэтому может рассматриваться, как часть головного мозга. Сетчатка получает кислород и питательные вещества от сосудистой оболочки (сзади) и ретинальных кровеносных сосудов (спереди). Сетчатка — это единственное место, где систему кровообращения головного мозга можно видеть непосредственно в офтальмоскопе.

Macula lutea с ямкой в центре — область сетчатки, характеризующаяся максимальной плотностью колбочек и отсутствием кровеносных сосудов. В этой части генерируются максимально четкие изображения, воспринимаемые мозгом наиболее детально и в самом высоком качестве.

Сетчатка — высокоорганизованная многослойная структура из нервных клеток. За пигментным эпителием сетчатки расположены два типа фоторецепторов — палочки и колбочки, выполняющие различные функции:
• палочки активируются светом слабой интенсивности (сумеречное зрение);
• колбочки активируются светом высокой интенсивности и отвечают за восприятие цвета. Фоторецепторы превращают свет в электрические импульсы посредством белка из рода опсинов. Генерированные импульсы передаются через биполярные клетки к ганглионарным клеткам сетчатки, аксоны которых формируют зрительный нерв и по нему направляются в головной мозг. Другие клетки сетчатки, включая амакриновые, горизонтальные и межплексиформные, также вовлечены в процесс обработки изображения, который происходит в сетчатке. Для восприятия фотонов света головным мозгом требуется преобразование этих фотонов в электрические импульсы в фоторецепторных клетках таким образом, чтобы смодулировать ими выброс нейротрансмиттеров. Это приводит к активизации нейронов, импульсы от которых в итоге достигают зрительных отделов коры, расположенных в затылочных долях головного мозга.

карбоангидраза

Регуляция высвобождения глутамата (нейротрансмиттера фоторецепторных клеток) происходит в несколько этапов. В тканях глаза фермент гуанилилциклаза превращает ГТФ в цГМФ. Затем цГМФ посредством ФДЭ превращается в ГМФ. Различают 11 основных изоформ ФДЭ, каждый из которых имеет еще различные подтипы.

Для фоторецепторов палочек имеет значение изоформа ФДЭ-6. В темноте активность ФДЭ-6 снижена, что приводит к накоплению цГМФ. Регуляция концентрации цГМФ критически важна для фоторецепторов палочек. Фоторецептор содержит родопсин, структура которого совпадает с G-белком, содержащим 11-цис-ретинальную функциональную группу. Фотон света вызывает конформационные изменения родопсина, активируя специфический G-белок трансдуцин (Gt). К а-цепочке Gt присоединяется бета/у-субъединица, что приводит к активации ФДЭ-6 и резко снижает концентрацию цГМФ.

Мембраны фоторецепторных клеток имеют особый вид ионных каналов, которые зависят от цГМФ (так называемые цГМФ-зависимые каналы). В присутствии цГМФ эти каналы пропускают катионы внутрь фоторецепторных клеток, что приводит к деполяризации. Так же как и в нейронах, деполяризация приводит к открытию потенциал-зависимых кальциевых каналов в пресинаптических отделах и высвобождению глутамата. Гиперполяризация фоторецептора приводит к закрытию кальциевых каналов и уменьшению высвобождения глутамата.

При отсутствии света (в темноте) в фоторецепторных клетках накапливаются большие концентрации цГМФ, фоторецепторные клетки деполяризуются и выбрасывают нейротрансмиттер. И наоборот, в присутствии света ФДЭ-6 активирована, что приводит к увеличению преобразования цГМФ в неактивный ГМФ и к снижению концентрации цГМФ. Фоторецепторные клетки гиперполяризуются, что приводит к закрытию потенциал-зависимых кальциевых каналов на пресинаптическом окончании, в результате уменьшается выделение глутамата.

Таким образом, в присутствии света фоторецепторы имеют низкую концентрацию цГМФ, гиперполяризованы и не выделяют нейротрансмиттеры. В первом синапсе зрительной системы воздействие фотонов света на сетчатку приводит к уменьшению выделения глутамата.

Следующие клетки в цепи передачи сигналов — биполярные клетки. Они делятся на два класса. «Включающие» биполярные клетки — это клетки, реагирующие на прекращение нейротрансмиттерной деполяризации. «Выключающие» биполярные клетки — это клетки, реагирующие на прекращение возбуждения, вызванного глутаматной гиперполяризацией. В связи с этим на ранних этапах визуальной обработки сетчатка глаза одновременно кодирует не только свет, но и его отсутствие во «включающих» и в «выключающих» клетках.

- Также рекомендуем "Функции различных полей зрения. Болезни органов зрения"

Оглавление темы "Терапия кожных и глазных болезней":
1. Системные глюкокортикостероиды при дерматозах. Противомалярийные средства при болезнях кожи
2. Солнцезащитные лекарства. Кожный защитный фактор от солнца
3. Антивирусные лекарственные средства. Местное применение антибиотиков при акне
4. Системное применение антибиотиков при кожных болезнях. Антипаразитарные лекарства при кожных болезнях
5. Репелленты при кожных болезнях. Барьерные лекарственные средства
6. Салициловая кислота и пропиленгликоль. Лекарства для снижения зуда
7. Анатомия глаза. Физиология глаза
8. Механизм фокусировки изображения на сетчатке. Процесс образования внутриглазной жидкости
9. Карбоангидраза. Сокращение гладких мышц и сетчатка
10. Функции различных полей зрения. Болезни органов зрения
Медунивер Мы в Telegram Мы в YouTube Мы в VK Форум консультаций врачей Контакты, реклама
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.