МедУнивер - MedUniver.com Все разделы сайта Видео по медицине Книги по медицине Форум консультаций врачей  
Рекомендуем:
Генетика:
Генетика
Аномалии хромосом
Биология клетки
Генетика врожденных пороков
Генетика рака - опухолей
Молекулярная генетика
Наследственные синдромы
Цитогенетика - исследование хромосом
Лечение наследственных болезней
Фармакогенетика
Форум
 

Фосфорилирование белков как регуляторный механизм клетки

• Протеинкиназы представляют собой большое семейство белков

• Протеинкиназы фосфорилируют Ser и Thr либо Tyr или же все три аминокислотных остатка

• Протеинкиназы узнают последовательность аминокислот, окружающую сайт фосфорилирования

• Протеинкиназы преимущественно узнают сайты фосфорилирования, расположенные в скрученных доменах

Фосфорилирование белков представляет собой наиболее распространенную форму их регуляторной посттрансляционной модификации. Оно происходит у всех организмов, и показано, что примерно 1/3 всех белков в клетке млекопитающих в определенные моменты времени подвергается фосфорилированию. Фосфорилирование может стимулировать или ингибировать каталитическую активность ферментов, сродство, с которым белок связывается с другими молекулами, его внутриклеточную локализацию и способность к дальнейшим ковалентным модификациям, или изменять его стабильность. При фосфорилировании одного остатка активность белка может измениться в 500 и более раз, и часто белки фосфорилируются по нескольким сайтам сложными и взаимозависимыми путями.

Большинство белков клеток эукариот и практически все в клетках животных фосфорилируются с участием протеинкиназ; их дефосфорилирование катализируется фосфопротеинфосфатазами. Оба класса ферментов находятся под контролем различных механизмов. Часто, наряду с этим, белки фосфорилируются несколькими протеинкиназами, что приводит к возникновению фосфорилированных форм, обладающих различной активностью. Это позволяет интегрироваться различным входным сигналам, обеспечивая активацию белков-мишеней.

У бактерий, растений и грибов важную роль играет еще одна система фосфорилирования белков, которая называется двухкомпонентной сигнальной системой. Участвующие в этой системе протеинкиназы отличаются от соответствующих ферментов эукариот и фосфорилируют остатки аспарагиновой кислоты, а не серина, треонина или тирозина.

Протеинкиназы переносят фосфатную группу с АТФ на остатки Ser, Thr и Tyr в белковых субстратах, образуя химически устойчивые фосфорные эфиры.

У животных фосфатные группы неравномерно распределяются среди трех остатков аминокислот: 90-95% приходится на остатки Ser, 5-8% на Thr, и менее 1% — на Tyr. В геноме человека содержится примерно 500 генов, кодирующих протеинкиназы, и для многих их мРНК характерен альтернативный сплайсинг. Это делает семейство генов протеинкиназ одним из наиболее представительных. Количество протеинкиназ и их разнообразие служат подтверждением широкого участия этих ферментов в регуляции клеточных функций. Хотя некоторые протеинкиназы характеризуются ограниченным тканевым распределением и участвуют не во всех процессах развития, многие из них распространены достаточно широко.

Классификация протеинкиназ основывается на их специфичности по отношению к остаткам аминокислот. Киназы, которые фосфорилируют остатки Ser, обычно также узнают остатки Thr; отсюда их название Ser/Thr киназы. У многоклеточных организмов Tyr киназы специфичны только по отношению к остаткам Tyr. Протеинкиназы, обладающие двойной специфичностью, могут фосфорилировать Ser, Thr и Tyr при строго определенной конформации субстрата и обычно являются наиболее селективными из протеинкиназ.

Анализ киномов нескольких организмов привел к более подробной классификации киназ, основанной на степени гомологии их первичной структуры. В какой-то степени эта классификация также отражает специфику регуляторных механизмов и субстратную специфичность киназ. Например, группа AGC называется в соответствии с входящими в нее цАМФ-зависимой протеинкиназой (РКА), циклоГМФзависимой протеинкиназой (PKG), Са2+ и фосфолипидзависимой проотеинкиназой (РКС). Эти протеинкиназы регулируются с участием вторичных мессенджеров и предпочитают субстраты, которые содержат остатки основных аминокислот, расположенные рядом с сайтом фосфорилирования.

Наряду со специфичностью по отношению к остаткам аминокислот, большинство протеинкиназ проявляет селективность в отношении локальных последовательностей, окружающих субстратный сайт. Разработаны методы скрининга, позволяющие выяснить, содержат ли белки в субстратном сайте консенсусную последовательность для широкого набора протеинкиназ. Для идентификации и общей оценки степени фосфорилирования белков в специфических сайтах можно использовать антитела. Наряду с узнаванием отдельных белков, протеинкиназы могут обнаруживать заметную субстратную специфичность среди родственных белков, например основанную на их общей трехмерной структуре, или среди белков, которые были дифференциально ковалентно модифицированы, например фосфорилированы или убиквитинилированы.

Некоторые протеинкиназы клеток млекопитающих представляют собой гормональные рецепторы, проходящие через плазматическую мембрану. Рецепторы некоторых протеинкиназ представляют собой такие серин/треонин киназы, как рецептор трансформирующего фактора роста-b (TGF-b). Однако в большинстве случаев они являются протеин-тирозинкиназами, включая инсулиновые рецепторы, эпидермальный ростовой фактор (PDGF), и другие регуляторы роста и дифференцировки клеток. Прочие протеинкиназы представляют собой растворимые внутриклеточные ферменты, хотя они могут связываться с мембраной одной или нескольких органелл.

В результате рентгеноструктурного исследования кристаллической структуры протеинкиназ было получено мнгого информации относительно механизма их активации. Минимальный размер консервативного каталитического ядра протеинкиназ составляет около 270 аминокислот, что соответствует минимальной молекулярной массе примерно 30 000 Да. В этом ядре находятся скрученные домены, образующие на границе раздела активный сайт. Один или несколько остатков лизина (Lys) или аспарагиновой кислоты (Asp), которые необходимы для фосфорилирования, часто мутируют, что приводит к потере активности киназой. Последовательность, расположенная рядом с активным сайтом, называется петлей активации и часто изменяет свою конформацию, образуя активные формы протеинкиназы. Эта последовательность в семействе протеинкиназ представляет собой наиболее частый сайт регуляторного фосфорилирования. На поверхности молекул протеинкиназ находятся уникальные участки, которые определяют специфичность локализации ферментов, их взаимодействие с другими регуляторными молекулами, и узнавание субстратов. Эти участки обеспечивают возможность классификации протеинкиназ и проведения с ними генетических процедур.

В дополнение к разнообразию и полифункциональности киназ, у этих ферментов выработалось множество разнообразных регуляторных механизмов. Эти механизмы включают аллостерическую активацию и ингибирование липидами, небольшими растворимыми молекулами и белками, фосфорилирование, оказывающее активирующее и ингибирующее действие, и другие ковалентные модификации, включая протеолиз, а также связывание с каркасными и адаптерными структурами, приводящее к увеличению их активности или ограничивающее неспецифическую активность. Многие из этих факторов могут регулировать одну протеинкиназу в составе сложного комплекса. Более того, многие протеинкиназы действуют в цепи процессов, как в протеинкиназном каскаде (см. рис. 14.38), и могут создавать уникальный комплекс процессов передачи сигналов.

Протеинкиназы
Протеинкиназы переносят у-фосфатную группу от АТФ на остатки серина, треонина или тирозина в белковых субстратах.
Киномное дерево человека
У человека протеинкиназные гены в соответствии с первичной структурой подразделяются на семь основных групп.
Одна большая группа содержит тирозинкиназы. Остальные группы специфичны к Ser/Thr, или проявляют двойную специфичность, и называются в соответствии с наиболее известными их представителями.
Группа AGC называется по РКА, PKG, и РКС.
САМК — по кальций, калмодулин-зависимым киназам,
CMGC — по CDK, МАРК, GSK3, Glks,
СК1 — по казеинкиназе-1;
STE — по Ste20, Ste11 и Ste7;
МАРК4К, МАРКЗК и МАРК2К участвуют в спаривании дрожжей;
и TKL — ферменты, напоминающие Tyr киназу.
Активная и неактивная конформации ERK2
Структуры нефосфорилированной, неактивной формы МАРК, ERK2, и фосфорилированной, активной ERK2.
ERK2 обладает типичной структурой протеинкиназы. Меньший, N-концевой домен состоит в основном из b-листов, а более крупный С-концевой домен имеет структуру а-спирали.
Активный сайт формируется на границе двух доменов.
Петля активации выходит из активного сайта и после фосфорилирования остатков Tyr и Thr повторно скручивается,
что изменяет положение аминокислотных остатков в активном сайте. АТФ (не показан) связывается с внутренней частью активного сайта;
связывание белковых субстратов с поверхностью С-концевого домена облегчается реорганизацией петли активации.
Структуры построены по данным Protein Data Bank files 1ERK и 2ERK.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

- Также рекомендуем "Двухкомпонентная сигнальная система клетки"

Оглавление темы "Сигнальные пути клетки":
  1. Регуляторная функция ГТФ-связывающих белков - Ras, Rho, Rac, Cdc42
  2. Фосфорилирование белков как регуляторный механизм клетки
  3. Двухкомпонентная сигнальная система клетки
  4. Механизм действия и применение ингибиторов протеинкиназ
  5. Механизм действия фосфопротеинфосфотаз на действие киназ
  6. Механизм контроля функции белков убиквитином (Ubl)
  7. Строение и функции белков Wnt по контролю клетки
  8. Строение и функции протеинтриозинкиназ - PDGF, IRS
  9. Строение и функции протеинтриозинкиназы Src
  10. Передача сигнала с участием протеинкиназы активируемой митогенами (MAPK)
Медунивер Мы в Telegram Мы в YouTube Мы в VK Форум консультаций врачей Контакты, реклама
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.