МедУнивер - MedUniver.com Все разделы сайта Видео по медицине Книги по медицине Форум консультаций врачей  
Рекомендуем:
Генетика:
Генетика
Аномалии хромосом
Биология клетки
Генетика врожденных пороков
Генетика рака - опухолей
Молекулярная генетика
Наследственные синдромы
Цитогенетика - исследование хромосом
Лечение наследственных болезней
Фармакогенетика
Форум
 

Перспективы изучения внеклеточного матрикса и межклеточных контактов

Как отмечалось в статьях на сайте, исследования внеклеточного матрикса и межклеточных контактов за последние 100 лет существенно продвинулись. В настоящее время нам известны основные компоненты этих структур, а также многое об их строении и функциях. Благодаря последним достижениям в области молекулярной генетики мы знаем, каким образом эти молекулы функционируют в процессе развития организмов.

Для того чтобы понять, что необходимо сделать в этой области дальше, давайте обратимся к практическому примеру. Посмотрите на свою руку. Поверните ее, постучите по столу пальцами, пощелкайте ими. Обратите внимание, как они сложно устроены. Ткани, из которых состоит наша рука, включают несколько миллиардов клеток. Эти клетки связываются между собой при участии внеклеточного матрикса и межклеточных контактов. Для того чтобы понять, как работает наша рука, нам необходимо знать, из каких частей она состоит, как они взаимодействуют между собой, и каким образом функционируют.

Такой подход с позиций редукционизма был применен к исследованиям внеклеточного матрикса и межклеточных контактов в таких органах, как сердце и печень.

Пока в результате исследований внеклеточного матрикса и межклеточных контактов было идентифицировано много разных типов структур и белков. Теперь мы знаем, что в этих структурах находятся сотни различных белков, однако это лишь часть от всех белков, входящих в их состав.

По мере нашего приближения к концу этого этапа исследований клеточной биологии, применение генетических методов и методов протеомики позволяет идентифицировать каждый белок и, может быть, даже делать предварительные выводы о его функциях.

Нам важно знать, каким образом взаимодействуют друг с другом различные структуры и белки. Чтобы разобраться в этом, необходимо наблюдать за большими группами взаимодействующих друг с другом клеток, выполняющих одну задачу. После того, как будет идентифицирован каждый белок, в результате применения редукционистского подхода будет достигнут этап, позволяющий in vitro собрать ткани и органы, содержащие эти белки.

История изучения внеклеточного матрикса

Предметом развивающейся области тканевой инженерии является, главным образом, реконструкция тканей в соответствии с основными принципами клеточной биологии. По мере того как мы больше узнаем о механизмах контроля клеточных функций со стороны внеклеточного матрикса и белков зоны межклеточного контакта, мы можем применять эти сведения для лабораторного создания тканей, все больше приближающихся к природным. Уже достигнуты успехи в разработке таких искусственных органов, как кожа, кости, хрящи, печень, роговица, кровеносные сосуды и даже спинной мозг.

Одной из отличительных особенностей следующей стадии исследований внеклеточного матрикса и межклеточных контактов станет расширение основных знаний, полученных ранее, и разработка полностью функциональных органов, способных заменить органы, поврежденные в результате травмы или заболевания.

Внеклеточный матрикс состоит из сотен различных молекул, которые взаимодействуют между собой сложным и высокоупорядоченным образом. Структурная устойчивость и гидрофильное окружение тканей обеспечиваются двумя основными группами молекул внеклеточного матрикса: структурными гликопротеинами (коллагены, эластины, фибронектины, ламинины) и протеогликанами (например гепарансульфатом). Каждая из этих молекул содержит структурные элементы, обеспечивающие присоединение клеточных рецепторов, факторов роста и других молекул внеклеточного матрикса.

Эти молекулы контролируют функциональную активность клеток, обеспечивая их сборку в трехмерные тканевые структуры, активируя процессы внутриклеточной передачи сигнала, и создавая субстрат, на котором происходит миграция клеток. Известно также, что состав компонентов матрикса во времени меняется, и находящиеся в нем клетки обеспечивают его формирование и деградацию в ответ на специфические сигналы.

Идентифицировано, по крайней мере, 100 различных белков, которые, объединяясь, образуют на поверхности клеток специализированные комплексы, участвующие в их прикреплении к внеклеточному матриксу и в формировании межклеточных контактов. Эти комплексы выполняют много специализированных функций.

Плотные и септированные контакты регулируют параклеточный транспорт между слоями эпителия; адгезивные контакты и фокальные адгезии связывают поверхность клеток с актиновым цитоскелетом, тем самым обеспечивая контроль клеточной подвижности; десмосомы и полудесмосомы связывают поверхность клетки с сетью промежуточных филаментов, обеспечивая устойчивость структуры и распределяя напряжение по обширной сети. Многие из этих комплексов содержат сигнальные белки, которые сообщаются с внутренним содержимым клетки, регулируя такие ее функции, как, например, рост. Эти сигнальные сети имеют крайне сложную организацию.

Каким образом объединяются все эти молекулы, образуя самостоятельно функционирующую единицу? Выяснение этого вопроса составляет предмет следующего этапа развития клеточной биологии. Уже становится заметной основная тенденция: в тех случаях, когда идентифицировано большинство молекулярных компонентов структуры (например, базальной ламины), основной упор в дальнейших исследованиях переносится на выяснение того, как взаимодействуют эти компоненты, образуя функционирующую ткань.

Разобрав на составные части такую клеточную структуру, как базальная ламина, мы теперь пытаемся опять собрать их вместе в такую функциональную единицу, как искусственная кожа. На четвертом этапе исследований центральное место в клеточной биологии будет занимать область тканевой инженерии, в которой полученные знания используются для получения биологических структур de novo.

Строение внеклеточного матрикса и межклеточных контактов
Схемы строения межклеточных контактов эпителиальных клеток (слева),
контактных адгезивных комплексов клеток неэпителиального происхождения (справа) и комплексов клеток с внеклеточным матриксом (внизу).
Показаны также основные классы компонентов внеклеточного матрикса (ВКМ).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

- Также рекомендуем "Схема строения прокариотической клетки"

Оглавление темы "Цитология":
  1. Строение и свойства адгезивных контактов клеток
  2. Строение и функции десмосом
  3. Строение и функции полудесмосом
  4. Строение и функции щелевых контактов
  5. Строение и функции кадгеринов
  6. Механизмы адгезии нейронов нейрональными молекулами клеточной адгезии (NCAM)
  7. Строение и функции селектинов
  8. Перспективы изучения внеклеточного матрикса и межклеточных контактов
  9. Схема строения прокариотической клетки
  10. Эволюция микроорганизмов - молекулярная филогенетика
Медунивер Мы в Telegram Мы в YouTube Мы в VK Форум консультаций врачей Контакты, реклама
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.