МедУнивер - MedUniver.com Все разделы сайта Видео по медицине Книги по медицине Форум консультаций врачей  
Рекомендуем:
Генетика:
Генетика
Аномалии хромосом
Биология клетки
Генетика врожденных пороков
Генетика рака - опухолей
Молекулярная генетика
Наследственные синдромы
Цитогенетика - исследование хромосом
Лечение наследственных болезней
Фармакогенетика
Форум
 

Строение и функции фибронектина

• Основная функция фибронектина, белка внеклеточного матрикса, заключается в прикреплении клеток к матрицам, содержащим фиблиллярный коллаген

• Известно, по меньшей мере, 20 различных форм фибронектина. Все они образуются за счет альтернативного сплайсинга одного гена

• Растворимые формы фибронектина присутствуют в жидких тканевых средах, в то время как его нерастворимые формы образуют волокна во внеклеточном матриксе

• Волокна фибронектина состоят из сшитых между собой полимеров гомодимерных форм фибронектина

• Фибронектиновые белки содержат шесть структурных областей, каждая из которых состоит из серии повторяющихся единиц

• Фибрин, гепарансульфат протеогликан и коллаген связываются с различными участками фибронектина и интегрируют его волокна в сеть внеклеточного матрикса

• В некоторых клетках экспрессируются рецепторы интегрина. которые связываются с последовательностью Arg-GLy-Asp (RGD), присутствующей в фибронектине

Фибронектины (от латинского fibra (волокно) и nectere (связывать, соединять)) экспрессируются в соединительной ткани почти у всех животных. Эти белки образуются в клетках нескольких типов, включая фибробласты, гепатоциты, клетки эндотелия, а также некоторые клетки нервной системы, выполняющие структурные функции. У человека по меньшей мере 20 разных фибронектинов образуются за счет альтернативного сплайсинга по четырем сайтам первичного транскрипта единственного фибронектинового гена.

Образующиеся варианты обладают специфичностью, в зависимости от типа клеток. Фибронектины подразделяют на две группы: растворимые (или фибронектины плазмы), которые присутствуют в различных тканевых жидкостях (например, в плазме, цереброспинальной и амниотической жидкости) и нерастворимые (или клеточные), образующие волокна во внеклеточном матриксе почти во всех тканях.

В тканях фибронектины скрепляют клетки с внеклеточным матриксом, регулируют их форму и организацию цитоскелета, способствуют свертыванию крови, а также контролируют функционирование многих клеток в процессе развития и заживления ран. В процессе свертывания крови фибронектин связывается с тромбоцитами на месте повреждения, а позже, при заживлении раны, он поддерживает миграцию новых клеток, по мере того, как они покрывают раневую поверхность. Многие опухолевые клетки также экспрессируют фибронектины, выполняющие роль субстрата для миграции клеток при образовании метастазов.

Фибронектины необходимы для нормального протекания процессов развития: мыши с выключенной функцией соответствующего гена погибают в раннем эмбриогенезе.

Сборка фибрилл фибронектина
Димеры фибронектина выходят из клетки в скрученной конформации, которая препятствует их ассоциации с другими димерами.
После связывания с интегриновыми рецепторами на поверхности клеток, фибронектиновые димеры расправляются, и открывают сайты связывания, к которым присоединяются другие димеры.
Накопление димеров фибронектина приводит к образованию из них фибриллы, связанной с поверхностью клетки.

Клетки связываются с фибронектином посредством специфических рецепторов, называемых интегринами. Подобно другим интегриновым рецепторам, фибронектиновые рецепторы участвуют в активации внутриклеточных путей передачи сигналов, контролирующих рост, подвижность и дифференцировку клеток.

Зрелый фибронектин, секретируемый клеткой, всегда представляет собой растворимый димер, образованный при участии двух дисульфидных мостиков, и обычно содержит две копии одного варианта фибронектина. Более того, димеризация фибронектина играет существенную роль для правильного образования нерастворимых фибронектиновых волокон. Для сборки растворимых фибронектинов в нерастворимые сети необходимы прямые контакты с клетками. Хотя механизм образования фибронектиновых волокон не совсем понятен, большинство моделей предполагает, что вначале димеры фибронектина связываются с интегриновыми рецепторами на поверхности клеток.

В дальнейшем клетки изменяют свою форму, за счет этого молекулы фибронектина растягиваются, принимая более вытянутую конфигурацию, близкую к линейной. К таким растянутым молекулам дополнительно присоединяются димеры фибронектина, образуя плотную сеть, которая под микроскопом выглядит в виде волокнистых структур, ориентированных вдоль актиновых волокон. Эти фибронектиновые волокна могут связываться с другими компонентами внеклеточного матрикса, превращая его в прочную опорную структуру.

Для выполнения своих функций фибронектины связываются с различными другими белками внеклеточного матрикса. Исследование связывания с использованием фрагментов фибронектина, полученных при ограниченном протеолизе, позволило выяснить функциональную организацию данного белка. Он содержит набор коротких последовательностей, называемых фибронектиновые повторы. Из-за альтернативного сплайсинга порядок расположения этих повторов варьирует. Повторяющиеся последовательности подразделяются на три группы, которые называются тип I, II и III.

Они последовательно нумеруются, начиная с амино-концевого участка белка. На рисунке ниже представлены функции этих повторов.

Фибронектиновые нити
Фотографии клеток, полученные с помощью флуоресцентного микроскопа.
Видны сети связанных фибронектиновых нитей (слева) и актиновых филаментов (справа), которые расположены одинаково.
Окрашивание иммунофлуоресцентным методом на фибронектин и актин соответственно.
Фибронектиновые нити и актиновые филаменты связаны вместе с помощью интегриновых рецепторов и связанных с ними белков.

• Поблизости от концевой аминогруппы расположен остаток глутамина, представляющий собой субстрат для фактора ХШа, фермента, связывающего фибронектин с фибрином, фибриногеном или другими фибронектинами в процессе свертывания крови.

• Повторы, относящиеся к типу I (1-5), которые связываются с фибрином, белком, участвующим в процессе свертывания крови, и с гепарансульфатом протеогликаном.

• Повторы типа I (6-9) и типа II (1-2), связывающиеся с коллагеном.

• Модульный экстрадомен-В (ED-B), который присутствует, главным образом, в фибронектине эмбриональных тканей, при заживлении ран и в ткани опухолей. Это позволяет предполагать, что домен может играть роль при перестройке ткани, происходящей в области интенсивного клеточного роста. В фибронектинах плазмы домен не обнаружен.

• Повторы типа III (8-11), которые связаны с двумя интегриновыми рецепторами на поверхности клеток посредством последовательности трех аминокислот (Arg-Gly-Asp, или RGD), присутствующей в повторе (10) этого типа. Эта область обеспечивает адгезивные свойства клеток, их рост и подвижность, а также играет критическую роль в образовании фибронек-тиновых волокон.

• Экстрадомен-А (ED-A), который, подобно ED-B, отсутствует в фибронектинах плазмы. По-видимо-му, он способствует усилению связывания клеток с фибронектином, хотя это является всего лишь предположением.

• Последовательности типа III (12-14), образующие область связывания с гепарансульфатом, который присоединяется к синдекановым рецепторам.

• Сопрягающий сегмент типа III (IIICS), который при сплайсинге образует различные по длине модули и, следовательно, множественные формы фибронектина. У человека идентифицированы, по меньшей мере, пять разных вариантов сплайсинга IIICS. Некоторые из них могут регулировать апоптоз. Этот сегмент связывается с двумя интегрино-выми рецепторами за счет последовательности Leu-Asp-Val.

• Один повтор типа II и три повтора типа III, образующие второй сайт связывания для фибрина, который участвует в свертывании крови.

• Поблизости от концевой карбоксильной группы белка два остатка цистеина образуют дисульфидные связи с другим полипептидом фибронектина.

Структура фибронектина
Два полипептида фибронектина ковалентно связаны друг с другом через дисульфидные связи, расположенные у карбоксильного концевого участка.
Каждый полипептид состоит из шести доменов, включающих небольшие повторяющиеся последовательности.
Отмечены основные области связывания.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

- Также рекомендуем "Строение и функции эластина (эластиновых волокон)"

Оглавление темы "Цитология":
  1. Контроль клеточного цикла циклин-зависимыми протеинкиназами (CDK)
  2. Передача сигнала с участием интегринов, JAK2, GPI, TCR, ITAM
  3. Перспективы изучения передачи внутриклеточных сигналов
  4. Строение внеклеточного матрикса (ВКМ) и межклеточных контактов
  5. История изучения внеклеточного матрикса (ВКМ)
  6. Типы и функции коллагена
  7. Строение и функции фибронектина
  8. Строение и функции эластина (эластиновых волокон)
  9. Строение и функции ламининов
  10. Строение и функции витронектина
Медунивер Мы в Telegram Мы в YouTube Мы в VK Форум консультаций врачей Контакты, реклама
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.