МедУнивер - MedUniver.com Все разделы сайта Видео по медицине Книги по медицине Форум консультаций врачей  
Рекомендуем:
Микробиология:
Микробиология
Общая микробиология
Общая бактериология
Экология микробов
Учение об инфекции
Лечение инфекций
Иммунология
Методы диагностики
Грам "+" бактерии
Грам "-" бактерии
Микобактерии
Хламидии. Микоплазмы. Риккетсии
Вирусы
Грибы
Простейшие
Гельминтозы
Санитарная микробиология
Видео по микробиологии
Книги по микробиологии
Форум
 

Опасность культивирования вирусов. Осложнения вирусной биотехнологии.

Однако, вероятность того, что ДНК из постоянных клеточных линий способна вызывать опухоли у людей, считается крайне низкой. Даже подкожное введение людям больших количеств клеток HeLa не сопровождалось канцерогенным действием. Анализ имеющихся экспериментальных данных показывает, что концентрация ДНК в культуральных жидкостях постоянных линий клеток гораздо ниже возможных трансформирующих уровней.

Совещание экспертов ВОЗ в Лондоне в 1989 г. определило, что предельное содержание гетерогенной ДНК (из клеточных систем и сконструированных векторов) в одной парентеральной дозе вакцин медицинского назначения не должно превышать 100 пкг. Подкожное введение 2 мкг ДНК вируса полиомы вызывает образование опухолей у 50% чувствительных животных. 100 пкг гетерогенной ДНК составляет 0,5х10-4 туморогенной дозы. Контаминирующая ДНК способна подавлять супрессорные гены или активировать протоонкогены после интеграции в клеточный геном. Риск мало зависит от происхождения контаминирующей ДНК. Все последовательности ДНК, обладающие характеристиками сильных промоторов, могут после рекомбинации создавать одинаковый риск.

Вероятность присутствия опасной активности на 1 молекулу ДНК составляет 10-6—10-19. Особую опасность могут представлять многокопийные плазмиды, амплифицированные сильные промоторные последовательности. Белковые контаминанты с коротким сроком жизни представляют меньший риск. Таким образом, принято считать, что риск, связанный с примесью гетерогенной клеточной ДНК, ничтожен, если ее количество не превышает 100 пкг в одной дозе препарата, вводимого парентерально. При оральном применении вакцины этот риск еще более снижается. Агенты, применяемые для инактивации вирусов в вакцинах, могут снижать или устранять биологическую активность гетерогенной клеточной ДНК, повышая тем самым их безопасность даже в тех случаях, когда количество ДНК в дозе вакцины, вводимой парентерально, превышает 100 пкг.

Кроме того, современные методы очистки вирусных препаратов позволяют снизить содержание клеточной ДНК до уровня, при котором ее присутствие даже теоретически не представляет опасности. Высокая степень очистки от клеточной ДНК (10 пкг/мл) достигнута при изготовлении лимфобластоидного интерферона, вакцины против полиомиелита на клетках Vero и поверхностного антигена вируса гепатита В в клетках СНО.

строение герпес вирусов

Риск, обусловленный вирусной контаминацией постоянных линий клеток может быть связан с полными вирусами, механизм репликации которых известен, вирусными частицами, напоминающими ретро-вирусы типа А, а также вирусными генами, интегрированными в ДНК таких клеток. При использовании постоянных клеточных линий для снижения или устранения риска вирусной контаминации следует, прежде всего, применять систему посевных клеток.

Создание резервных запасов постоянных линий клеток, проверенных в соответствии с требованиями ВОЗ (1982, 1987 гг.), является необходимым условием производства лицензированных вакцин. Предполагаемый риск, связанный с белками, кодируемыми онкогенами постоянных линий клеток, ограничен лишь факторами роста, действие которых транзисторно и обратимо. В обнаруживаемых концентрациях они не представляют серьезной опасности и, кроме того, многие из них быстро разрушаются.

Методы контроля должны гарантировать отсутствие в конечном препарате биологически активных количеств потенциально онкогенных примесей (гетерогенная ДНК, трансформирующие белки, эндогенные вирусы). Исследовательские группы, рассматривавшие проблему приготовления медицинских иммунобиологических препаратов, пришли к заключению, что несмотря на существование потенциального риска, данные, подтверждающие безопасность препаратов, оправдывают их применение.

В 1985 г. Комитетом экспертов по стандартизации биологических препаратов были приняты «Требования к непрерывным линиям клеток, используемым в производстве биологических продуктов». Отмена запрета на использование постоянных клеточных линий в качестве субстрата в производстве медицинских биологических препаратов открыла новые возможности в деле расширения производства вирусных препаратов, повышения их качества и снижения стоимости.

В настоящее время в ряде стран широко используют постоянные линии клеток для изготовления медицинских биопрепаратов. Использование постоянных линий клеток в качестве субстрата в производстве вирусных вакцин имеет ряд преимуществ. Они не требуют сложных условий культивирования, их можно выращивать в промышленных культиваторах и ферментерах, хорошо изучить и охарактеризовать, а маточные расплодки, свободные от контаминации эндогенными и экзогенными вирусами, длительно хранить при низкой температуре. Многие ученые считают, что приготовление вакцин с использованием клеток Vero по сравнению с первичными культурами клеток почек обезьян, представляет меньший риск вирусной контаминации. Накапливается все больше данных, что клетки Vero и ВНК-21 - безопасные субстраты для производства медицинских биопрепаратов.
Клетки Vero не обладали туморогенными свойствами, а клетки ВНК-21 (клон 13) оставались кариологически стабильными в течение 52 пассажей.

Изучение чистоты и биологической безопасности белка клеток показало отсутствие посторонних вирусов, а также следов вирусных последовательностей в геноме клеток Vero.

Клетки Vero используют в производстве вакцин против полиомиелита и бешенства человека. Инактивированная полиовакцина улучшенного качества лицензирована в 1982 г., в последующие 5 лет ею было привито более 20 млн. детей без побочного эффекта. В 1988 г. ее производство составило 60 млн. доз. Инактивированная вакцина против бешенства лицензирована в 1985 г. В последующий период были использованы сотни тысяч доз вакцины при низком уровне клинических реакций. Успешно завершились широкомасштабные клинические испытания живой полиовакцины для орального применения из вируса, размноженного в клетках Vero.

В 1987 г. во Франции лицензирована компонентная вакцина против гепатита В, изготавливаемая на основе рекомбинантной линии клеток СНО. В Великобритании, Японии и Китае получали интерферон в культуре постоянной линии клеток Namalva.

В связи с возможностью клинического применения моноклональных антител, актуальность приобретает культивирование таких клеток в больших масштабах. Предварительные результаты показывают, что непрерывное крупномасштабное культивирование гибридом в свободной суспензионной культуре в сочетании с непрерывным диализом культуральной среды может дать хороший урожай секретируемых антител (100—140 мг/л). При крупномасштабном производстве один работающий 1000-литровый ферментер фирмы Celltech может обеспечить получение килограммовых количеств моноклональных антител. Кроме того, гибридные клеточные линии сами по себе могут быть использованы в качестве субстрата для репродукции вирусов.

Таким образом, только пересмотр существующих ограничений по применению тканевых культуральных систем для производства вирусных вакцин позволяет использовать индустриальные методы массового выращивания вирусов на основе суспензионного культивирования - подобно тому, как это делают в микробиологической промышленности. Ученых, работающих в этой области, не обескураживают даже очевидные успехи генной инженерии. Многие ученые считают, что генная инженерия с использованием микроорганизмов может упразднить проблемы, связанные с развитием и использованием массового культивирования клеток животных, и поэтому технология, основанная на их применении, не имеет будущего. Однако в конкуренции традиционной и новой технологий изготовления вирусных препаратов, где решающее значение имеет качество конечного продукта, обнаружились непредвиденные обстоятельства.

Во-первых, при попытке экспрессии вирусных генов в прокариотических организмах не всегда получены удовлетворительные практические результаты.
Во-вторых, с тех пор как стало возможным клонировать в клетках животных гены, кодирующие вирусные белки, важность крупномасштабного производства клеточных культур еще более возросла. Данные обстоятельства позволили выразить надежду, что биотехнология клеток животных сохранит свою авангардную роль.

- Также рекомендуем "Среды для выращивания вирусов. Клеточные субстраты в вирусологии."

Оглавление темы "Биотехнологии в вирусологии.":
1. Дефектные интерферирующие вирусные частицы. ДИ-частицы вирусов.
2. Типы взаимодействия вирусов с клетками. Особенности воздействия вирусов на клетки.
3. Культивирование вирусов. Биотехнологии в вирусологии.
4. Опасность культивирования вирусов. Осложнения вирусной биотехнологии.
5. Среды для выращивания вирусов. Клеточные субстраты в вирусологии.
6. Постоянная клеточная линия для выращивания вирусов. Непрерывное культивирование вирусов.
7. Виды культур клеток в биотехнологии вирусов. Культуры лимфобластоидных и миеломных клеток.
8. Контаминация клеточных культур в вирусологи. Загрязнение культуры с вирусами.
9. Вирусная контаминация в вирусологи. Борьба с вирусной контаминацией.
10. Проверка клеточной культуры на контаминацию вирусами. Вирусы контаминирующие клеточные культуры.
Медунивер Мы в Telegram Мы в YouTube Мы в VK Форум консультаций врачей Контакты, реклама
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.