MedUniver Микробиология
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Микробиология:
Общая микробиология
Общая бактериология
Экология микробов
Учение об инфекции
Лечение инфекций
Иммунология
Методы диагностики
Грам "+" бактерии
Грам "-" бактерии
Микобактерии
Хламидии. Риккетсии
Спирохеты. Трепонемы
Вирусы
Грибы
Простейшие
Гельминтозы
Санитарная микробиология
Книги по микробиологии
Рекомендуем:
Необходимое:
Книги по медицине
Видео по медицине
Фотографии по медицине
Консультации врачей
Форум
 
Оглавление темы "Дыхание ( аэробное, анаэробное ). Катаболизм у бактерий. Конструктивный метаболизм ( пластический обмен ). Рост бактерий в культуре.":
1. Пропионовокислое брожение. Маслянокислое и ацетонобутиловое брожение. Гомоацетатное брожение. Получение энергии окислительным фосфорилированием. Дыхание.
2. Катаболизм углеводов у бактерий. Гликолиз. Гликолитический путь окисления. Путь Эмбдена-Мейерхофа-Парнаса. Пентозофосфатный путь окисления. Схема Варбурга-Диккенса-Хореккера-Рэкера.
3. Путь Энтнера-Дудорова у бактерий. Цикл Кребса. Цикл трикарбоновых кислот у бактерий.
4. Катаболизм азотсодержащих органических соединений бактериями. Аминокислоты. Декарбоксилирование и дезаминирование аминокислот бактериями. Механизм Стиклэнда.
5. Катаболизм жиров и жирных кислот бактериями. Эндогенный энергетический метаболизм бактерий.
6. Конструктивный метаболизм ( пластический обмен ). Углеродные соединения для биосинтетических реакций бактерий. Биосинтез аминокислот и белков бактериями.
7. Биосинтез нуклеотидов и нуклеиновых кислот бактериями.
8. Биосинтез олигосахаридов и полисахаридов бактериями. Биосинтез липидов ( жиров ) бактериями.
9. Регуляция метаболизма микроорганизмов. Аллостерические белки.
10. Рост бактерий в культуре. Фазы роста бактерий. Лаг фаза роста. Экспоненциальная фаза роста бактерий. Стационарная фаза роста.

Конструктивный метаболизм ( пластический обмен ). Углеродные соединения для биосинтетических реакций бактерий. Биосинтез аминокислот и белков бактериями.

Совокупность биосинтетических реакций включения низкомолекулярных соединений в клеточные полимеры составляет суть конструктивного метаболизма. Комплекс этих реакций иногда называют пластическим обменом.

Углеродные соединения для биосинтетических реакций бактерий

Для биосинтеза клеточных компонентов необходимы соответствующие низкомолекулярные соединения-предшественники (например, сахара или аминокислоты). При наличии таких предшественников в окружающей среде они непосредственно вовлекаются в различные биосинтети-че.ские пути. Однако гораздо чаще бактериям приходится предварительно синтезировать большую часть молекул-предшественников из доступных исходных продуктов. Огромное разнообразие субстратов, которые бактерии могут использовать в качестве источников питания, вытекает из широкого спектра их метаболических возможностей. Исходные продукты для биосинтеза образуются в ходе различных путей катаболизма, включая гликолиз, КДФГ-путь, пентозофос-фатный путь, окисление пирувата и ЦТК. Например, углеродные фрагменты из ЦТК — сукцинил-КоА и ацетил-КоА — используются соответственно для образования тетрапирролов и жирных кислот. Следует помнить, что подобное «изъятие» интермедиатов из ЦТК возможно лишь при постоянном восполнении их дефицита.

Конструктивный метаболизм ( пластический обмен ). Углеродные соединения для биосинтетических реакций бактерий. Биосинтез аминокислот и белков бактериями.

Биосинтез аминокислот и белков бактериями

Аминокислоты. Большинство свободно живущих бактерий способно синтезировать все необходимые им аминокислоты. Теоретически все 20 необходимых аминокислот могут находиться в окружающей среде и быть доступными для утилизации. Кроме того, бактерии способны получать аминокислоты из белковых молекул, расщепляя их бактериальными протеазами и пептидазами. Образующиеся при этом олигопептиды и аминокислоты транспортируются в клетку, где включаются в биосинтетические пути либо расщепляются на низкомолекулярные продукты. Паразитические бактерии потребляют готовые аминокислоты из организма хозяина. Бактериям, культивируемым на питательных средах, содержащих только неорганические источники азота или ограниченное количество аминокислот, приходится синтезировать некоторые из них (или даже все) из доступных азотсодержащих соединений. Основное назначение источников азота — поступление в бактериальную клетку «сырья» для формирования аминных (NH2) и иминных (NH) групп в молекулах аминокислот, нуклеотидов, гетероциклических оснований и других химических компонентов.

При этом азотсодержащие вещества, помимо сырья для пластического обмена, могут включаться в энергетический метаболизм (например, у анаэробов некоторые аминокислоты могут образовывать окислительно-восстановительные системы). Наиболее доступные минеральные источники азота в природе — аммонийный ион (NH4+) и аммиак (NH3), легко проникающие в клетки и просто трансформирующиеся в амино- и иминогруппы, Основные исходные соединения для синтеза аминокислот — пируват (образуется в гликолитическом цикле), а-кетоглутарат и фумарат {образуются в ЦТК). При синтезе молекул аминокислот атом азота вводится на последних этапах биосинтеза путём переаминирования; лишь L-аланин, L-глутамат и аспартат образуются через прямое аминирование.

Пептиды и белки. Бактериальная клетка способна синтезировать несколько тысяч различных белков, каждый из которых содержит в среднем 200 аминокислотных остатков. Информация, направляющая синтез этих белков, закодирована в последовательности нуклеотидов ДНК. Синтез полипептидной цепи происходит в цитоплазме клетки на рибонуклеопротеидных частицах (рибосомах) в сочетании с молекулой мРНК или информационной РНК (иРНК), которая синтезируется на матрице ДНК в процессе транскрипции.

Бактериальная рибосома обладает массой 2,7*106 Д и состоит на 65% из рибосомной РНК (рРНК) и на 35% из белка (примерно 50 различных белков). Информация, содержащаяся в молекулах мРНК, транслируется в полипептидную цепь при участии особого класса молекул РНК, известных как тРНК. Многофункциональность тРНК позволяет им присоединяться к определённым аминокислотам, связываться с рибосомой и узнавать определённые последовательности из трёх нуклеотидов (кодон) в составе мРНК. Узнаваемый кодон соответствует конкретной аминокислоте; нужная аминокислота «подаётся» при помощи узнающей её молекулы тРНК к концу растущей полипептидной цепочки. Так растёт будущая молекула белка.

- Читать далее "Биосинтез нуклеотидов и нуклеиновых кислот бактериями."

Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта