MedUniver Микробиология
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Микробиология:
Общая микробиология
Общая бактериология
Экология микробов
Учение об инфекции
Лечение инфекций
Иммунология
Методы диагностики
Грам "+" бактерии
Грам "-" бактерии
Микобактерии
Хламидии. Риккетсии
Спирохеты. Трепонемы
Вирусы
Грибы
Простейшие
Гельминтозы
Санитарная микробиология
Книги по микробиологии
Рекомендуем:
Необходимое:
Книги по медицине
Видео по медицине
Фотографии по медицине
Консультации врачей
Форум
 
Оглавление темы "Дыхание ( аэробное, анаэробное ). Катаболизм у бактерий. Конструктивный метаболизм ( пластический обмен ). Рост бактерий в культуре.":
1. Пропионовокислое брожение. Маслянокислое и ацетонобутиловое брожение. Гомоацетатное брожение. Получение энергии окислительным фосфорилированием. Дыхание.
2. Катаболизм углеводов у бактерий. Гликолиз. Гликолитический путь окисления. Путь Эмбдена-Мейерхофа-Парнаса. Пентозофосфатный путь окисления. Схема Варбурга-Диккенса-Хореккера-Рэкера.
3. Путь Энтнера-Дудорова у бактерий. Цикл Кребса. Цикл трикарбоновых кислот у бактерий.
4. Катаболизм азотсодержащих органических соединений бактериями. Аминокислоты. Декарбоксилирование и дезаминирование аминокислот бактериями. Механизм Стиклэнда.
5. Катаболизм жиров и жирных кислот бактериями. Эндогенный энергетический метаболизм бактерий.
6. Конструктивный метаболизм ( пластический обмен ). Углеродные соединения для биосинтетических реакций бактерий. Биосинтез аминокислот и белков бактериями.
7. Биосинтез нуклеотидов и нуклеиновых кислот бактериями.
8. Биосинтез олигосахаридов и полисахаридов бактериями. Биосинтез липидов ( жиров ) бактериями.
9. Регуляция метаболизма микроорганизмов. Аллостерические белки.
10. Рост бактерий в культуре. Фазы роста бактерий. Лаг фаза роста. Экспоненциальная фаза роста бактерий. Стационарная фаза роста.

Катаболизм азотсодержащих органических соединений бактериями. Аминокислоты. Декарбоксилирование и дезаминирование аминокислот бактериями. Механизм Стиклэнда.

Доступные субстраты для получения углерода, азота и энергии — аминокислоты, пурины и пиримидины. Как аэробные, так и анаэробные бактерии используют эти соединения для синтеза белка либо непосредственно, либо после ряда превращений и вовлечения в промежуточный обмен.

Аминокислоты. Декарбоксилирование и дезаминирование аминокислот бактериями. Механизм Стиклэнда.

Декарбоксилирование и дезаминирование аминокислот. Первой реакцией катаболизма аминокислот может быть декарбоксилирование либо дезаминирование. Декарбоксилазы действуют обычно в кислой среде, образуя С02 и первичные амины (так называемые биогенные амины, трупные яды — кадаверин, путресцин, агматин). Поскольку при этом высвобождаются основные группы (амины), то такой процесс рассматривают как механизм нейтрализации среды и сохранения рН в физиологических пределах.

Катаболизм азотсодержащих органических соединений бактериями. Аминокислоты. Декарбоксилирование и дезаминирование аминокислот бактериями.

Дезаминирование аминокислот идёт с выделением аммиака. В зависимости от судьбы углеродного скелета различают дезаминирование окислительное (наиболее распространённое, например, превращение глутаминовой кислоты в 2-оксоглутаровую), гидролитическое и приводящее к образованию ненасыщенных соединений. Ферменты, катализирующие эти реакции, обычно специфичны для D- и L-изомеров аминокислот. Углеродные фрагменты, не содержащие азота, используются в процессах брожения или дыхания. Если в состав аминокислот входит сера, то последняя обычно высвобождается в форме сероводорода или меркаптанов. Разложение ароматических аминокислот (например, триптофана) происходит с образованием индола и скатола. У некоторых микроорганизмов в качестве источников энергии могут использоваться лишь некоторые продукты дезаминирования. Например, эшерихии и протеи дезаминируют триптофан с образованием индола и пирувата, из которых лишь последний утилизируется как источник энергии. Поскольку индол накапливается в культуре, то его наличие легко обнаруживают с помощью реактива Эрлиха (смесь л-диметиламинобензальдегида и НСl в этаноле), что используют для идентификации бактерий на практике.

• Некоторые бактерии обладают специальными механизмами получения энергии при расщеплении аминокислот. Например, аргинин расщепляет аргининдегидролазная система, состоящая из нескольких ферментов. Первоначально аргининдезаминаза катализирует его превращение в цитрул-лин, затем последний превращается в орнитин через реакцию, сопряжённую с синтезом АТФ.

• На средах, содержащих смесь аминокислот, многие клостридии получают большую часть энергии не из отдельных компонентов, а путём сопряжения окислительно-восстановительных реакций между парами подходящих аминокислот, известного как механизм Стиклэнда. С этих позиций аминокислоты можно разделить на акцепторы (глицин, орнитин, пролин) и доноры водорода (аланин, изолейцин и валин). Первоначально донор окисляется до кетокислоты, затем «доокисляется» до жирной кислоты. Образующийся при этом НАДН+ утилизируется для восстановления другой аминокислоты — акцептора (или, реже, другого азотистого соединения).

Переаминирование аминокислот. Кроме реакций дезаминирования и декарбоксилирования, аминокислоты могут подвергаться переаминированию, то есть переносу целой аминогруппы от аминокислоты к а-кетокислотам без промежуточного образования аммиака. Участвующая в переамини-ровании аминокислота (донор аминогруппы) превращается в а-кетокислоту {продукт окислительного дезаминирования), а сс-кетокислота (акцептор) подвергается восстановительному аминированию. Реакции катализируют специфические трансферазы. В реакциях переаминиро-вания участвуют все L-аминокислоты, при этом на а-кетокислоты переносятся аминогруппы не только в а-положении, но и в других положениях.

Аминокислоты. Декарбоксилирование и дезаминирование аминокислот бактериями. Механизм Стиклэнда.

Пурины и пиримидины

Пурины и пиримидины становятся доступными для энергетического метаболизма лишь после гидролиза нуклеотидов и нуклеозидов. В результате их разложения образуются углекислота, аммиак, муравьиная, уксусная и молочная кислоты, часть из которых включается в рассмотренные выше энергетические пути.

- Читать далее "Катаболизм жиров и жирных кислот бактериями. Эндогенный энергетический метаболизм бактерий."

Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта