MedUniver Микробиология
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Микробиология:
Общая микробиология
Общая бактериология
Экология микробов
Учение об инфекции
Лечение инфекций
Иммунология
Методы диагностики
Грам "+" бактерии
Грам "-" бактерии
Микобактерии
Хламидии. Риккетсии
Спирохеты. Трепонемы
Вирусы
Грибы
Простейшие
Гельминтозы
Санитарная микробиология
Книги по микробиологии
Рекомендуем:
Необходимое:
Книги по медицине
Видео по медицине
Фотографии по медицине
Консультации врачей
Форум
 
Оглавление темы "Перенос веществ в бактериальной клетке. Питательные субстраты бактерий. Энергетический метаболизм бактерий.":
1. Активный перенос веществ в бактериальной клетке. Транспорт веществ обусловленный фосфорилированием. Выделение веществ из бактериальной клетки.
2. Фермент. Ферменты бактерий. Регуляторные ( аллостерические ) ферменты. Эффекторные ферменты. Определение ферментативной активности бактерий.
3. Питательные субстраты бактерий. Углерод. Аутотрофия. Гетеротрофия. Азот. Использование неорганического азота. Ассимиляционные процессы в клетке.
4. Диссимиляционные процессы. Использование органического азота в клетке. Аммонификация органических соединений.
5. Фосфор. Сера. Кислород. Облигатные ( строгие ) аэробы. Облигатные ( строгие ) анаэробы. Факультативные анаэробы. Аэротолерантные бактерии. Микроаэрофильные бактерии.
6. Ростовые факторы бактерий. Ауксотрофы. Прототрофы. Классификация факторов стимулирующих рост бактерий. Пусковые факторы роста бактерии.
7. Энергетический метаболизм бактерий. Схема идентификации неизвестной бактерии. Экзэргонические реакции.
8. Синтез ( регенерация ) АТФ. Получение энергии в процессе фотосинтеза. Бактерии фототрофы. Реакции фотосинтеза. Стадии фотосинтеза. Световая и темновая фаза фотосинтеза.
9. Получение энергии при окислении химических соединений. Бактерии хемотрофы. Получение энергии субстратным фосфорилированием. Брожение.
10. Спиртовое брожение. Гомоферментативное молочнокислое брожение. Гетероферментативное брожение. Муравьинокислое брожение.

Синтез ( регенерация ) АТФ. Получение энергии в процессе фотосинтеза. Бактерии фототрофы. Реакции фотосинтеза. Стадии фотосинтеза. Световая и темновая фаза фотосинтеза.

Синтез АТФ осуществляется тремя способами: фотосинтетическое фосфорилирование, окислительное фосфорилирование (сопряжённое с транспортом электронов по дыхательной цепи) и субстратное фосфорилирование.

В первых двух процессах преобразование поступившей с потоком электронов энергии в энергию фосфоэфирных связей АТФ осуществляет особый фермент — АТФ-синтетаза. Этот фермент присутствует во всех мембранах, участвующих в преобразовании энергии (мембраны бактерий, митохондрий и хлоропластов). АТФ-синтетаза катализирует присоединение неорганического фосфата (Фн) к АДФ, образование которого осуществляет аде-нилаткиназа (АМФ + АТФ = 2 АДФ). Активность АТФ-синтетазы можно обнаружить по обратной реакции гидролиза АТФ: АТФ + Н20 = АДФ + Фн + Н+. Благодаря обратимости реакции фосфорилирования, накопившийся АТФ может быть использован для создания протонного градиента, обеспечивающего энергией движение жгутиков и осмотическую работу. Энергия также направляется для обратного переноса электронов, необходимого для восстановления никотинамидадениндинуклеотида (НАД) при использовании бактериями неорганических доноров электронов (S03, N03, Fe2+ и др.).

Синтез ( регенерация ) АТФ. Получение энергии в процессе фотосинтеза. Бактерии фототрофы. Реакции фотосинтеза. Стадии фотосинтеза.

Получение энергии в процессе фотосинтеза. Бактерии фототрофы. Реакции фотосинтеза.

Получение энергии в процессе фотосинтеза. Основной источник энергии для жизни на Земле — Солнце, но непосредственно утилизировать энергию инсоляции в мире бактерий способны лишь немногочисленные бактерии фототрофы [от греч. photos, свет, + trophe, питание]. Фотосинтезирующие бактерии, подобно растениям, превращают энергию видимого света в протонный потенциал на энергопреобразующей мембране. В последующем с помощью АТФ-синтетазы энергия консервируется в АТФ. Основной признак, отличающий фотосинтегические реакции у пурпурных и зелёных бактерий от таковых у растений и цианобактерий, — отсутствие выделения кислорода (так как в качестве донора электронов они используют не воду, a H2S или органические вещества). У бактерий аналог хлоропластов растительных клеток — хроматофоры, содержащие хлорофилл и каротиноидные пигменты.

Таким образом, под фотосинтезом понимают происходящее в клетках фототрофных организмов преобразование световой энергии в биохимически доступную энергию (протонный градиент на мембране тилакоидов и хлоропластов, АТФ) и восстановительную силу НАДФН+, а также связанный с этим синтез клеточных компонентов. Реакции фотосинтеза протекают в две стадии (световая и темновая фазы).

Световая фаза фотосинтеза. Под действием фотонов электрон хроматофора активируется, затем он возвращается в исходное состояние. При этом высвобождается энергия, используемая для создания протонного градиента, а затем синтеза АТФ и восстановления никотинамидадениндинуклеотидфосфата (НАДФ) до НАДФН+. Последнее может происходить за счёт обратного транспорта электронов с затратой АТФ.

Синтез ( регенерация ) АТФ. Получение энергии в процессе фотосинтеза. Бактерии фототрофы. Реакции фотосинтеза. Стадии фотосинтеза.

Темновая фаза фотосинтеза. Образовавшиеся макроэргические соединения используются для ассимиляционного восстановления С02 в глюкозу. Глюкоза содержит значительное количество энергии (около 690 ккал/моль), что и используют гетеротрофные бактерии, разлагая глюкозу и запасая энергию в универсальном хранителе — АТФ.

- Читать далее "Получение энергии при окислении химических соединений. Бактерии хемотрофы. Получение энергии субстратным фосфорилированием. Брожение."

Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта