Регуляция обмена глюкозы. Синтез и распад гликогена
а) Инсулин увеличивает облегченную диффузию глюкозы. Скорость транспорта глюкозы, как и транспорта других моносахаридов, существенно увеличивается инсулином. Если поджелудочная железа продуцирует большие количества инсулина, скорость транспорта глюкозы в большинстве клеток возрастает более чем в 10 раз по сравнению со скоростью транспорта глюкозы при отсутствии инсулина. Напротив, при отсутствии инсулина количество глюкозы, которое может диффундировать внутрь большинства клеток, за исключением клеток мозга и печени, столь мало, что не в состоянии обеспечить нормальный уровень энергетических потребностей.
Скорость потребления глюкозы большинством клеток находится под контролирующим влиянием скорости продукции инсулина поджелудочной железой. Функции инсулина и его регуляторные влияния на обмен углеводов подробно изложены в отдельной статье на сайте (просим вас пользоваться формой поиска выше).
б) Фосфорилирование глюкозы. Как только глюкоза попадает в клетки, она связывается с фосфатными радикалами в соответствии со следующей схемой реакции:
Фосфорилирование осуществляется главным образом ферментом глюкокиназой в печени или гексокиназой в большинстве других клеток. Фосфорилирование глюкозы является почти полностью необратимой реакцией, исключая клетки печени, эпителиоциты почечного тубулярного аппарата и клетки кишечного эпителия, в которых присутствует другой фермент — глюкофосфорилаза. Будучи активирована, она может сделать реакцию обратимой. В большинстве тканей организма фосфорилирование служит способом захвата глюкозы клетками. Это происходит в связи со способностью глюкозы немедленно связываться с фосфатом, а в такой форме она не может выходить обратно из клетки, кроме некоторых особых случаев, в частности из клеток печени, которые располагают ферментом фосфатазой.
в) Гликоген запасается в печени и мышцах. После поступления внутрь клетки глюкоза практически немедленно используется клеткой для энергетических целей либо запасается в виде гликогена, который является крупным полимером глюкозы.
Все клетки организма способны запасать какие-то количества гликогена, но особенно большие его количества депонируются клетками печени, которая может запасать гликоген в количествах, составляющих от 5 до 8% веса этого органа, или мышечными клетками, содержание гликогена в которых составляет от 1 до 3%. Молекула гликогена может полимеризоваться так, что в состоянии иметь практически любую молекулярную массу; в среднем молекулярная масса гликогена составляет около 5 млн. В большинстве случаев гликоген, осаждаясь, образует крупные гранулы.
Превращение моносахаридов в преципитирующее соединение с большой молекулярной массой (гликоген) дает возможность запасать большие количества углеводов без заметного изменения осмотического давления во внутриклеточном пространстве. Высокая концентрация растворимых моносахаридов с низкой молекулярной массой могла бы приводить к катастрофическим последствиям для клеток в связи с формированием огромного градиента осмотического давления по обе стороны клеточной мембраны.
г) Гликогенез — процесс образования гликогена. Химические реакции образования гликогена показаны на рисунке ниже.
Химические реакции глюкогенеза и гликогенолиза. Показаны также взаимные превращения глюкозы крови и гликогена печени (фосфатаза требуется для высвобождения глюкозы из клеток и представлена в клетках печени, но отсутствует в большинстве других клеток)
На рисунке видно, что глюкозо-6-фосфат становится глюкозо-1-фосфатом, который затем превращается в глюкозоуридинфосфат, в итоге образующий гликоген. Для этих превращений необходимы специфические ферменты. Кроме того, и другие моносахариды, превращаясь в глюкозу, могут участвовать в образовании гликогена. Более мелкие соединения, включая молочную кислоту, глицерол, пировиноградную кислоту и некоторые дезаминированные аминокислоты, также могут превращаться в глюкозу или близкие ей соединения и затем становиться гликогеном.
д) Гликогенолиз — извлечение гликогена из депо. Процесс расщепления гликогена, хранящегося в клетках, который сопровождается высвобождением глюкозы, называют гликогенолизом. Затем глюкоза может использоваться в целях получения энергии. Гликогенолиз невозможен без реакций, обратных реакциям получения гликогена, при этом каждая вновь отщепляющаяся от гликогена молекула глюкозы подвергается фосфорилированию, катализируемому ферментом фосфорилазой. В состоянии покоя фосфорилаза пребывает в неактивном состоянии, поэтому гликоген может храниться в депо. Когда появляется необходимость получить глюкозу из гликогена, прежде всего должна активироваться фосфорилаза. Это может достигаться несколькими путями.
е) Активация фосфорилазы адреналином или глюкагоном. Два гормона — адреналин и глюкагон — могут активировать фосфорилазу и таким образом ускорять процессы гликогенолиза. Начальные моменты влияний этих гормонов связаны с образованием в клетках циклического аденозинмонофосфатау который затем запускает каскад химических реакций, активирующих фосфорилазу.
Адреналин выделяется из мозгового вещества надпочечников под влиянием активации симпатической нервной системы, поэтому одна из ее функций заключается в обеспечении обменных процессов. Эффект адреналина особенно заметен в отношении клеток печени и скелетных мышц, что обеспечивает наряду с влияниями симпатической нервной системы готовность организма к действию.
Глюкагон — гормон, выделяемый альфа-клетками поджелудочной железы, когда концентрация глюкозы в крови снижается до слишком низких значений. Он стимулирует образование циклического АМФ главным образом в клетках печени, что, в свою очередь, обеспечивает превращение в печени гликогена в глюкозу и ее высвобождение в кровь, повышая таким образом концентрацию глюкозы в крови.