MedUniver Микробиология
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Микробиология:
Общая микробиология
Общая бактериология
Экология микробов
Учение об инфекции
Лечение инфекций
Иммунология
Методы диагностики
Грам "+" бактерии
Грам "-" бактерии
Микобактерии
Хламидии. Риккетсии
Спирохеты. Трепонемы
Вирусы
Грибы
Простейшие
Гельминтозы
Санитарная микробиология
Книги по микробиологии
Рекомендуем:
Необходимое:
Книги по медицине
Видео по медицине
Фотографии по медицине
Консультации врачей
Форум
 

Аттенуация вирусов. Генетические мутации вирусов.

Все вирусные популяции характеризуются генетическим полиморфизмом, в основе которого лежат спонтанные мутации как результат ошибок при считывании вирусного генома в процессе репликации.

Спонтанные мутации ответственны за фенотипические изменения различных свойств вируса, в том числе вирулентности. В природе вирусы в процессе передачи от хозяина к хозяину совершают множество циклов репродукции. В этот период постоянно генерируются спонтанные мутации, которые могут вызывать изменения свойств вируса. В организме природного хозяина селекционируются преимущественно вирулентные вирусные частицы, которые способны передаваться серийно восприимчивым организмам.
Адаптация вирусов к неестественным условиям репродукции сопровождается прогрессирующей селекцией спонтанных мутантов адекватно новым условиям размножения.

Вирулентность вируса может быть снижена разными путями, в том числе пассированием в культурах клеток особенно неестественного хозяина. При этом преимущественно накапливаются мутанты, которые размножаются быстрее, чем полевой вирус. Затем такие мутанты селекционируют и определяют пригодность для использования в качестве живой вакцины. Аттенуированные мутанты часто являются пригодными в качестве живых вакцин потому, что они не долго размножаются в организме естественного хозяина и в то же время часто вызывают выраженный иммунный ответ.

аттенуация вирусов

У РНК-вирусов защитный механизм считывания генетической информации менее эффективен, чем у ДНК-вирусов. Они обладают значительно более высокой скоростью мутации, не менее чем в 100 раз, чем ДНК-вирусы ДНК-вирусы генетически более стабильны и труднее адаптируются. Частота ошибок у РНК-зависимых полимераз значительно выше, чем у ДНК-зависимых полимераз. На 10 000 оснований РНК-вирусов приходиться примерно одна мутация. РНК-полимераза коронавирусов может привести примерно к трем редким мутациям вируса на каждые 30 кb генома в процессе репродукции. Нелетальные мутанты РНК-вирусов накапливаются достаточно быстро. Гены, кодирующие разные белки, изменяются с разной скоростью.

Классическая аттенуация вирусов связана с селекцией спонтанных мутантов с пониженной вирулентностью. Идеально, аттенуация вирусных штаммов не должна сопровождаться потерей способности удовлетворительно размножаться в организме естественного хозяина, изменением антигенности и потерей протективных свойств.

Генетические мутации наиболее часто сопровождаются заменой единичных нуклеотидов (точечные, миссенс мутации). Реже мутации связаны с делецией или инсерцией единичных нуклеотидов или блоков нуклеотидов. Фенотипическая экспрессия мутаций может проявляться изменением различных свойств вируса.

Точечные мутации, сопровождающиеся специфическими аминокислотными заменами, в кодируемых вирусом белках могут снижать их функцию in vivo и тем самым вызывать аттенуацию вируса для хозяина. По уровню аттенуации и их потенциальной полезности для живых вирусных вакцин различают три класса точечных мутаций: чувствительные к температуре (ts мутанты); зависящие от протеолитического расщепления (Ра мутанты) и с измененным тканевым (клеточным) тропизмом.

Ts мутанты обычно являются условно летальными вирусами, которые эффективно размножаются при 32—34°С. Аттенуирующие ts мутации идентифицированы в большинстве, если не во всех генах вирусов; ts мутацию можно вызвать почти в любом гене. Ts мутанты особенно пригодны для иммунизации людей против респираторных вирусных болезней. Они хорошо размножаются в верхнем отделе респираторного тракта человека (32—34°С) и плохо — в нижнем (37°С).

Обнаружение ts мутантов (неспособных удовлетворительно размножаться при температуре несколько выше, чем нормальная температура тела) обычно отражает снижение вирулентности и указывает на возможность их использования в качестве живой вакцины. Однако, даже вакцины, содержащие более чем одну мутацию, доставляют беспокойство, связанное с возможностью восстановления вирулентности в процессе размножения в привитом организме.

Вакцинные штаммы полиовируса являются температурочувствительными со значительно сниженной способностью к размножению и нейровирулентностью для обезьян при введении в спиной мозг. Однако такие штаммы хорошо размножаются в кишечнике вакцинированных животных и могут вызывать виремию, и создают иммунитет. Хотя вакцинный вирус выделяется с фекалиями, контактная передача чувствительным организмом происходит очень редко.

Аттенуация путем адаптации вируса к размножению при пониженной температуре приводит к получению холодоадаптированных (Са) мутантов. К Са мутантам относятся безопасные вакцинные штаммы для интраназального применения, т.к. они хорошо размножаются при пониженной температуре носовой полости (около 33°С у большинства видов млекопитающих), но не при температуре низлежащих респираторных путей и легких. Холодоадаптированные вакцинные штаммы против гриппа, содержащие мутации почти в каждом гене, не давали реверсии. В 1997 году вакцину против гриппа людей, основанную на таких мутациях, использовали в США. Са мутанты успешно использовали при создании живых вакцин против ряда вирусных болезней животных.

Ра мутанты играют важную роль в аттенуации вирусов, инфекционность которых зависит от протеолиза структурного белка.
Известно, что протеолитическое расщепление парамиксовирусов необходимо для активации инфекционности и играет важную роль в проявлении тканевого тропизма и патогенности. Трипсин-подобные ферменты, присутствующие в клетках хозяина, требуются для расщепления предшественника белка сплавления FO на две субъединицы F1 и F2. Ра мутанты устойчивые к активации трипсином, оказывались аттенуированными.

Протеолитическое расщепление ГА вируса гриппа клеточными протеазами является важным для инфекционности вирусного потомства. В культуре клеток куринного эмбриона не происходит расщепления гемагглютинина.
Точечные мутации могут сочетаться с делеционными мутациями.

- Читать далее "Делеционные мутации вирусов. Вставки или инсерции в геном вируса."


Оглавление темы "Физические методы инактивации вирусов для вакцин.":
1. Физические методы инактивации вирусов. Гамма-лучи в инактивации вирусов.
2. Оценка полноты инактивации вирионов. Вакцина против полиомиелита - ящура.
3. Проблемы инактивации вирусов. Пути разрешения проблем при физической инактивации вирусов.
4. Живые вирусные вакцины. Особенности живых вакцин.
5. Аттенуация вирусов. Генетические мутации вирусов.
6. Делеционные мутации вирусов. Вставки или инсерции в геном вируса.
7. ДИЧ-мутации вирусов. Аттенуация вируса серийными пассажами.
8. Учение об аттенуации Сэбина. Аттенуация вируса полиомиелита по Сэбину.
9. Живая аттенуированная вакцина против кори. Аттенуированный вирус паротита, ветряной оспы, краснухи.
10. Аттенуация вируса гриппа. Свойства аттенуированного вируса гриппа.
Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта