МедУнивер - MedUniver.com Все разделы сайта Видео по медицине Книги по медицине Форум консультаций врачей  
Рекомендуем:
Физиология человека:
Физиология
Физиология клетки
Физиология эндокринной системы
Физиология пищеварительной системы
Физиология клеток крови
Физиология обмена веществ, питания
Физиология почек, КЩС, солевого обмена
Физиология репродуктивной функции
Физиология органов чувств
Физиология нервной системы
Физиология иммунной системы
Физиология кровообращения
Физиология дыхания
Физиология водолазов, дайверов
Видео по физиологии
Книги по физиологии
Форум
 

Каскад усиления в сетчатке. Фотохимия цветового зрения

а) Механизм, с помощью которого распад родопсина снижает натриевую проводимость мембраны. Каскад усиления. При оптимальных условиях одиночный фотон света (самая малая квантовая единица световой энергии) может вызвать в палочке доступный для измерения рецепторный потенциал, равный примерно 1 мВ. Достаточно всего 30 фотонов света, чтобы вызвать половинное насыщение палочки (рецепторный потенциал, равный половине максимально возможного). Как такое небольшое количество света вызывает такой мощный эффект? Ответ в том, что фоторецепторы имеют чрезвычайно чувствительный каскад, усиливающий эффект стимуляции примерно в миллион раз, а именно:

1. Фотон активирует электрон в 1 цис-ретинале родопсина, что ведет к образованию метародопсина II, т.е. активной формы родопсина (для облегчения понимания просим вас изучить рисунок ниже).

2. Активированный родопсин функционирует как фермент, активирующий много молекул трансдуцина (белка, присутствующего в неактивной форме в мембранах дисков и клеточной мембране палочек).

3. Активированный трансдуцин активирует гораздо больше молекул фосфодиэстеразы.

4. Активированная фосфодиэстераза сразу гидролизует много молекул циклического гуанозинмонофосфата, таким образом разрушая его. До этого цГМФ был связан с белком натриевого канала наружной мембраны палочки, в известном смысле «фиксируя» этот белок в открытом состоянии. Но на свету, когда фосфодиэстераза гидролизует цГМФ, эта фиксация прекращается, и каналы для натрия закрываются. Несколько сотен каналов закрывается в ответ на каждую изначально активированную молекулу родопсина. Поскольку поток ионов Na+ через каждый из этих каналов в темноте был чрезвычайно быстрым, закрытие каждого канала блокирует вход более миллиона ионов Na+ на все время, пока канал не откроется снова. Именно это уменьшение тока ионов Na+ через мембрану и вызывает возбуждение палочки. 5. В течение примерно секунды другой фермент, всегда присутствующий в палочке, — родопсинкиназа — инактивирует активированный родопсин (метародопсин II), и весь каскад возвращается к нормальному состоянию с открытыми натриевыми каналами. Таким образом, в палочках функционирует важный химический каскад, который усиливает действие одиночного фотона света, вызывая движение миллионов ионов Na . Это объясняет чрезвычайную чувствительность палочек в условиях полной темноты.

Колбочки в 30-300 раз менее чувствительны, чем палочки, но даже в этом случае возможно цветовое зрение при любой интенсивности света (если она больше, чем очень густые сумерки).

Каскад усиления в сетчатке. Фотохимия цветового зрения
Зрительный цикл родопсина и ретиналя в палочке, демонстрирующий распад родопсина под действием света с последующим медленным восстановлением его в процессе химических реакций

Фотохимия цветового зрения, осуществляемого колбочками

Как указывалось, фоточувствительные вещества в колбочках имеют почти такой же химический состав, как и родопсин в палочках. Различаются лишь белковые части — опсиныу а именно: фотопсины в колбочках отличаются от скотопсина палочек. Ретинальная часть всех зрительных пигментов и в колбочках, и в палочках совершенно одинаковая. Следовательно, цветочув-ствительные пигменты колбочек — это комбинация ретиналя и фотопсинов.

Из дальнейшего обсуждения станет ясно, что в каждой колбочке присутствует лишь один из трех типов цветных пигментов, что делает колбочки избирательно чувствительными к различным цветам: синему, зеленому или красному. Эти цветные пигменты называют синечувствителъным, зеленочувствительным и красночувствительным пигментами, соответственно. Их характеристики поглощения имеют максимумы для световых волн разной длины (445, 535 и 570 нм, соответственно). Такие же длины волн характеризуют максимальную светочувствительность колбочек каждого типа, что и объясняет способность сетчатки различать цвета. Примерные кривые поглощения для этих пигментов представлены на рисунке ниже. Показана также кривая поглощения для родопсина палочек с максимумом в области световых волн длиной 505 нм.

Каскад усиления в сетчатке. Фотохимия цветового зрения
Поглощение света пигментом палочек и пигментами трех цветочувствительных колбочек сетчатки человека

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

- Также рекомендуем "Световая и темновая адаптация. Механизмы световой и темновой адаптации"

Оглавление темы "Физиология сетчатки. Проводящие зрительные пути":
1. Каскад усиления в сетчатке. Фотохимия цветового зрения
2. Световая и темновая адаптация. Механизмы световой и темновой адаптации
3. Острота зрения. Определение расстояния до объекта глазами
4. Слепота на отдельные цвета. Функция нейронов сетчатки
5. Зрительный путь от колбочек. Нейромедиаторы нейронов сетчатки
6. Функция горизонтальных клеток сетчатки. Возбуждение и торможение биполярных клеток
7. Амакриновые клетки. Ганглиозные клетки сетчатки
8. Возбуждение ганглиозных клеток. Роль латерального торможения в сетчатке
9. Зрительные пути. Дорсолатеральное коленчатое ядро таламуса
10. Зрительная кора. Строение первичной зрительной коры
Медунивер - поиск Мы в Telegram Мы в YouTube Мы в VK Мы в Instagram Форум консультаций врачей Контакты, реклама
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.