Отоларингология
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Отоларингология:
Отоларингология
Анатомия уха, горла, носа
Аудиометрия. Исследование слуха
Отомикоз. Грибок ушей
Нарушение голоса
Нарушение слуха
Нарушение речи
Органы чувств:
Оценка органов чувств
Болезни органов чувств
Травмы органов чувств
Рекомендуем:
Книги по медицине
Видео по медицине
Фотографии по медицине
Консультации врачей
Форум
 

Евстахиева труба. Костная проводимость звука

Ее длина около 3,5 см. Основная функция евстахиевой трубы вентиляционная. Благодаря этому соединению барабанной полости с носоглоткой поддерживается одинаковое давление по обе стороны барабанной перепонки.
При нарушениях проходимости трубы и уменьшении воздушного давления в барабанной полости втяжение барабанной перенонки ведет к увеличению акустического сопротивления звукопроводящей системы и слух снижается примерно на 15 дб для низких звуков. Вследствие всасывания кислорода его парциальное давление понижается и когда оно падает ниже 60 мм ртутного столба, т. е. ниже давления в капиллярах, из них начинается просачивание жидкости в полость среднего уха.

Нарушения проходимости трубы отражаются и на величине внутрилабиринтного давления (Кобрак).
В норме вентиляционная функция обеспечивается актом глотания и зевания, при которых трубы открываются.

Евстахиева труба выполняет и дренажную функцию, благодаря которой жидкость из барабанной полости может эвакуироваться в носоглотку. Это способствует очистке среднего уха и защищает его от инфекции.

Костная проводимость звука

Помимо обычного пути через воздух, звуковые волны могут дойти до улитки и по костному (или тканевому) пути и вызвать раздражение рецептора.
Это имеет место, в частности, тогда, когда вибрирующий предмет соприкасается с черепом, зубами или другими плотными тканями, хотя и в обычных условиях, при воздушной проводимости, часть энергии звука попадает в лабиринт по тканям черепа.

Большое значение костная проводимость звука приобретает при поражениях звукопроводящей системы уха.
Касаясь механизма костной проводимости, Бецольд отмечал, что вибрация костей черепа передается на стремя и в конце концов возбуждение рецептора возникает благодаря вибрациям стремени (остеотимпанальный путь).

В настоящее время доказано, что существует и чисто костная проводимость, причем раздражение рецептора может осуществляться помимо стремени (опыты с удалением стремени).

При этом происходит компрессия лабиринтной капсулы и усиленное давление на лимфу, вследствие которого мембраны окон выпячиваются в сторону барабанной полости. В фазе декомпрессии мембраны занимают свою обычную позицию. При этом величина сдвига мембраны круглого окна будет превалировать ввиду ее большей податливости (отсутствие костной основы и круговой связки). Сопротивление же подножной пластинки увеличено еще системой косточек и барабанной перепонкой.

евстахиева труба

Считается, что в норме подвижность мембраны круглого окна примерно в 5—7 раз больше, чем подножной пластинки, и поэтому при компрессии улитки возникает смещение столба лимфы в сторону круглого окна и основная мембрана выпячивается в направлении scala tympani. При одинаковом сопротивлении окон никакого выгиба основной перепонки не получилось бы.
Этот вид костной проводимости называется компрессионным.

Очевидно, чем больше разница в сопротивлении со стороны обоих окон тем больше будет сдвиг. При этом механизме анкилоз стремени подведет к усилению костной проводимости. Легко видеть, что и при этом механизме состояние окон играет существенную роль, хотя они и не участвуют как проводники звуковых колебаний в лабиринт. Компрессионный механизм доминирует при частых колебаниях, когда в костях черепа наблюдаются зоны сжатий и разрежений.

Кроме того, существуют и другие механизмы костной проводимости. Так, например, при малых частотах черен не только испытывает сжатие и декомпрессию, но приходит в колебание как целое, производя при приложении вибратора ко лбу движения вперед и назад, а при приложении к сосцевидному отростку — колебания во фронтальной плоскости. При этом благодаря инерции цепи слуховых косточек, свободно подвешенных на связках, череп то подвигается на стремя, то отходит, т. е. получается смещение между краем овального окна и подножной пластинкой.

Этот модус называется инерционной костной проводимостью [Барани (Ваrаnу)]. Он превалирует при проведении малочастотных звуков. В отличие от компрессионной проводимости здесь главное значение имеет подвижность стремени, поэтому при анкилозе стремени компрессионная проводимость будет усилена, а инерционная — уменьшена. Их общим свойством является то, что звуковая энергия действует изнутри улитки кнаружи, а при обычной воздушной проводимости энергия действует снаружи внутрь.

Кроме этих основных механизмов действия звуков по костной проводимости, имеются и добавочные механизмы. Так, например, колебания черепа часть своей энергии передают окружающему воздуху и звуковые волны обычным путем, через трансформационный аппарат, доходят до улитки.

Колебания же костных стенок слухового прохода и стенок барабанной полости часть своей энергии передают воздуху слухового прохода и воздуху барабанной полости и таким путем доходят до улитки.

Наконец, Бекеши придает известное значение колебаниям нижней челюсти, которые вызываются инерционным путем. Эти колебания вызывают соответствующие периодические сжатия и разрежения воздуха в слуховом проходе.

Как видно, эти добавочные пути по механизму действия ближе стоят к обычной воздушной проводимости, при которой звуковая энергия действует снаружи внутрь. Поэтому исследования при помощи костной проводимости являются сложным методом, при котором действуют многочисленные механизмы, оказывая свое влияние в различной степени — в зависимости от характера звука и от патологических изменений в звукопроводящем аппарате.

Особый способ подведения звука к улитке заключается в применении звукового зонда — вибрирующего стержня. Он позволяет сравнивать костную проводимость с результатами, полученными при приложении стержня к разным структурам звукопроводящего аппарата (к барабанной перепонке в области короткого отростка, к головке или подножной пластинке стремени и т. д.). Сравнение данных (остроты слуха), полученных при подведении звука к отдельным структурам, дает возможность судить о сохранности или нарушениях их функций.

Среди многих неизвестных один важный факт можно считать установленным. Каким бы путем (по воздушной или костной проводимости) ни доставлялся звук к кортиевому органу, в конце концов, возбуждение происходит благодаря тождественным процессам ( передвижению столба лимфы и выгибу основной мембраны). Это было доказано Бекеши: подводя к уху звуки одинаковой силы и высоты по воздушной и костной проводимости, но противоположные по фазе, ему удалось получить интерференцию и погасить слуховое ощущение.

- Читать далее "Звуковой анализатор - улитка. Строение звуковоспринимающего аппарата"


Оглавление темы "Исследование слуха":
  1. Евстахиева труба. Костная проводимость звука
  2. Звуковой анализатор - улитка. Строение звуковоспринимающего аппарата
  3. Эндолимфатический потенциал кортиева органа. Биохимия возбуждения улитки
  4. Нервные проводники уха: кохлеарный нерв
  5. Слуховые ядра продолговатого мозга и их обратное влияние на слух
  6. Взаимосвязь слухового анализатора с мозгом, мышцами
  7. Понижение слуха при поражении улитки. Корковая тугоухость
  8. Исследование слуха речевой и шепотной речью. С какого расстояния ухо слышит шепот?
  9. Порог разборчивости речи. Кривые разборчивости Богданова
  10. Исследование восприятия звуков и шумов ухом
Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта