Онкология
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Обшая онкология:
Онкология
Общие вопросы онкологии
Детская онкология
Генетика рака - опухолей
Химиотерапия опухолей
Частная онкология:
Опухоли кожи
Опухоли головы и шеи
Опухоли легких и средостения
Опухоли молочной железы
Опухоли органов ЖКТ
Опухоли мочеполовой системы
Онкогинекология
Саркомы костей и мягких тканей
Опухоли крови:
Острые лейкозы
Хронические лейкозы
Макроглобулинемии
Миелодиспластические синдромы (МДС)
Лимфомы
Рекомендуем:
Книги по онкологии
Видео по онкологии
Форум
 

Радиоактивные изотопы применяемые в терапии (радиотерапии)

Радиоактивность является естественным свойством многих веществ, атомы которых находятся в нестабильном состоянии. Хотя атом каждого химического элемента характеризуется строго определенным количеством входящих в него протонов и электронов, количество нейтронов в атомном ядре может варьировать, так что атомный вес (определяемый как сумма входящих в ядро протонов и нейтронов) может быть различным у атомов одного и того же элемента.

Смесь таких атомов, получившие название изотопов, в определенной пропорции присутствует в любом чистом веществе (особенно в металлах типа железа, марганца или кобальта). Радиоактивное излучение является результатом распада нестабильных атомных ядер на более стабильные элементы. Каждый химический элемент характеризуется вполне определенным уровнем естественной радиоактивности.

Существует множество естественных радиоактивных материалов, которые излучают в диапазоне, способном вызывать ионизацию в живых тканях. Исторически принято подразделять все радиоактивные излучения на а-, b- и у-излучения, в зависимости от их характеристик. Альфа-частицы по сути являются ядрами атомов гелия, испускаемыми при распаде нестабильных радионуклидов.

Следует помнить, что, хотя многие характеристики радиоактивных излучений описываются исходя из волновой концепции излучения, каждое излучение одновременно является также потоком частиц. С этой точки зрения легче понять природу а- и b-излучений. Так, а-излучение представляет собой поток тяжелых положительно заряженных атомов гелия, а b-излучение является потоком отрицательно заряженных электронов с исчезающе малой массой. Гамма-лучи в отличие от предыдущих типов излучения не несут никакого заряда.

Хотя все эти три типа излучения способны вызывать ионизацию в живых тканях, наибольшее распространение в радиационной терапии получило именно у-излучение. В медицине очень широко используется нестабильный изотоп кобальта с атомным весом 60, который теряет один из нейтронов с испусканием у-излучения и превращается в стабильный изотоп с атомным весом 59.

Характеристики излучения при этой реакции очень стабильны, а количество распадов остается неизменным, так что за 5,33 года половина массы этого радиоактивного элемента переходит в стабильную форму, что определяет период полураспада для 60Со. Знание времени полураспада того или иного элемента очень важно для планирования теоретических и клинических задач.

Для различных элементов этот период колеблется от нескольких секунд до сотен и тысяч лет. Радий, который интенсивно использовался в медицинской практике до нахождения более подходящих элементов, имеет период полураспада в 1620 лет, т. е. такой источник излучения практически не требует замены при его использовании. Тем не менее в настоящее время в медицине все более широко применяются бета-частицы или электроны, так как характеристики этого излучения более подходят для медицинских целей.

В настоящее время происходит изучение и других атомных частиц, так как теоретически они могут оказывать интересные биологические эффекты. Речь идет о нейтронах, протонах и пи-мезонах.

Хотя с момента открытия радия супругами Кюри медики пользовались в основном радиоактивными источниками естественного происхождения, современная физика высоких энергий позволяет производить целый ряд искусственных источников и изотопов. Эти радионуклиды обычно получают путем бомбардировки в атомных реакторах природных материалов тяжелыми частицами.

Радиоактивные изотопы в терапии

Преимущество искусственных источников излучения состоит в том, что так можно получать материалы с наиболее приемлемыми для поставленных задач характеристиками у-излучения и периода полураспада.

Разработка новых диагностических методов, например радиоизотопного сканирования, и внедрение новых подходов в терапии требуют создания искусственных источников излучения с заданными свойствами. Применительно к терапии требуется создание новых типов закрытых и открытых источников. Использование закрытых источников состоит в том, что радиоактивный материал помещается в изолирующий контейнер (например, платиновые иглы с радиоактивным цезием или радием).

В этом случае возможно введение радиоактивного материала именно в те ткани, которые требуется облучить, а по прошествии заданного времени удалить его из организма.

Открытые радиоактивные источники, такие как I, вводятся в организм перорально или в виде инъекции. Они проникают в кровяное русло и аккумулируются в органе-мишени (в случае с йодом — в щитовидной железе, где радиоактивное излучение действует как на опухолевую ткань, так и на нормальные ткани железы). Понятно, что в последнем случае изотопы невозможно использовать повторно.

Открытые источники широко используются в диагностике (радиоактивный технеций — в диагностическом сканировании костей и мозга). В терапии наиболее известно применение радиоактивных изотопов йода (обычно 131I) для лечения рака щитовидной железы. Изотоп принимается перорально, избирательно накапливается в щитовидной железе и обеспечивает «внутреннее» облучение высокой интенсивности, практически не затрагивая близлежащие органы и ткани. Менее известным примером является использование радиоактивного фосфора (32Р) для облучения костного мозга при стойкой красной полицитемии или истинной полицитемии.

Терапия с использованием радионуклидов характеризуется избирательностью, эффективностью и относительно малой токсичностью, что допускает многократное использование, в том числе в качестве паллиативного лечения. Ограничения, накладываемые на эти виды терапии, связаны с необходимостью содержать пациентов в изолированных помещениях, и трудностями с хранением радиоактивных отходов. Кроме того, многие современные методы радиотерапии довольно дорогостоящи. Тем не менее в последнее время в клинической практике год от года растет количество показаний к применению открытых радиоактивных источников в лечении онкологических заболеваний.

В клинической практике выбор естественных или искусственных радиоактивных изотопов зависит от поставленной задачи. Например, при интерстициальной имплантации, когда содержащие радиоактивный материал иглы помещаются в непосредственной близости или вообще внутри опухолевой ткани, все более широко используется радиоактивный цезий вместо ранее применяемого радия.

Дело в том, что радий характеризуется очень высокой радиационной активностью (количество радиоактивных распадов в секунду), и при работе с ним требуется уделять большое внимание защите медицинского персонала, проводящего данное лечение. Радиационная активность цезия значительно ниже, поэтому затраты времени и средств на защиту от излучения при работе с ним будут также значительно ниже.

Радиоактивные изотопы также используются в источниках внешнего облучения (дистанционная лучевая терапия). Почти все крупные онкологические центры укомплектованы установками для дистанционной гамматерапии, так как множество опухолей залегает достаточно глубоко и не может быть подвергнуто облучению с использованием прямой имплантации (брахитерапии). В настоящее время в качестве внешнего источника излучения наиболее широко применяется 60Со, радиоактивный изотоп, который излучает высокоэнергетические у-лучи (с энергией порядка 1,2 МэВ), обладающие достаточной проникающей способностью, чтобы достигать глубоко залегающие опухоли.

Период полураспада кобальта-60 составляет 5,3 года, поэтому источник на его основе может работать без замены изотопа в течение 3-4 лет.

Традиционная кобальтовая пушка представляет собой цилиндрический источник 60Со, получаемый в атомных реакторах, помещенный в защитную оболочку. С помощью простого механизма источник выдвигается в рабочее положение на требуемое для проведения лечения время, а затем вновь убирается внутрь защитного кожуха.

В настоящее время такое оборудование все чаще признается устаревшим и по возможности заменяется линейными ускорителями, которые более надежны, долговечны, относительно недороги и более просты в эксплуатации. К недостаткам кобальтового излучателя следует также отнести рассеивание радиации на границах пучка и старение изотопного источника, так как по мере снижения его радиоактивности в результате атомного распада со временем требуется увеличивать время экспозиции.

- Читать далее "Рентгеновское излучение применяемое в терапии (радиотерапии) рака"


Оглавление темы "Онкология":
  1. Хорионический гонадотропин человека (ХГЧ) в норме и при раке
  2. а-Фетопротеин в норме и при раке
  3. Плацентарная щелочная фосфатаза (ПЩФ) и карциноэмбриональный антиген (КЭА) в норме и при раке
  4. Онкомаркер СА-125 в норме и при раке
  5. Онкомаркер СА-19-9 в норме и при раке
  6. Молекулярные маркеры стадийности развития опухоли
  7. Физика радиотерапии - ионизирующей радиации
  8. Радиоактивные изотопы применяемые в терапии (радиотерапии)
  9. Рентгеновское излучение применяемое в терапии (радиотерапии) рака
  10. Чувствительность опухолей к радиации и рентгеновскому излучению
Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта