Лучевая медицина
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Лучевая медицина:
Лучевая медицина
Рентгенология
Рентгенография глаза, глазницы
Органы чувств:
Оценка органов чувств
Болезни органов чувств
Травмы органов чувств
Рекомендуем:
Остальные разделы:
Абдоминальная хирургия
Анатомия человека
Акушерство
Биология
Генетика
Гепатология
Гигиена труда
Гинекология
Гистология
Дерматология
Оз и Оз
Кардиология
Лучевая медицина
Микробиология
Неврология
Неотложная хирургия
Отоларингология
Офтальмология
Профилактика заболеваний
Психология
Пульмонология
Физиология человека
Скорая помощь
Стоматология
Топографическая анатомия
Травматология
Фармакология
Необходимое:
Книги по медицине
Видео по медицине
Фотографии по медицине
Консультации врачей
Форум
Форум
 

Устройство рентгеновской трубки. Принципы получения рентгеновских лучей

Генератором рентгеновых лучей является рентгеновская трубка. Современная электронная трубка конструируется по единому принципу и имеет следующее устройство. Основой является стеклянная колба в виде шара или цилиндра, в концевые отделы которой впаяны электроды: анод и катод. В трубке создается вакуум, что способствует вылету электронов из катода и быстрейшему их перемещению.

Катод представляет собой спираль из вольфрамовой (тугоплавкой) нити, которая укрепляется на молибденовых стержнях и помещается в металлический колпак, направляющий поток электронов в виде узкого пучка в сторону анода.
Анод делается из меди (быстрее отдает тепло и сравнительно легко охлаждается), имеет массивные размеры. Конец, обращенный к катоду, косо срезается под углом 45—70°. В центральной части скошенного анода имеется вольфрамовая пластинка, на которой находится фокус анода — участок 10—15 мм2, где в основном и образуются рентгеновы лучи.

Процесс образования рентгеновых лучей. Нить накала рентгеновской трубки — вольфрамовая спираль катода при подведении к ней тока низкого напряжения (4—15 В, 3—5А) накаливается, образуя свободные электроны вокруг нити. Включение тока высокого напряжения создает на полюсах рентгеновской трубки разность потенциалов, в результате чего свободные электроны с большой скоростью устремляются к аноду в виде потока электронов — катодных лучей, которые, попав на фокус анода, резко тормозятся, вследствие чего часть кинетической энергии электронов превращается в энергию электромагнитных колебаний с очень малой длиной волны. Это и будет рентгеновское излучение (лучи торможения).

По желанию врача и техника можно регулировать как количество рентгеновых лучей (интенсивность), так и качество их (жесткость). Повышая степень накала вольфрамовой нити катода можно добиться увеличения количества электронов, что обусловливает интенсивность рентгеновых лучей. Повышение напряжения, подаваемого к полюсам трубки, ведет к увеличению скорости полета электронов, что является основой проникающего качества лучей.

рентгеновская трубка

Выше уже было отмечено, что фокус рентгеновской трубки — это тот участок на аноде, куда попадают электроны и где генерируются рентгеновы лучи. Величина фокуса влияет на качество рентгеновского изображения: чем меньше фокус, тем резче и структурней рисунок и наоборот, чем он больше, тем более расплывчатым становится изображение исследуемого объекта.

Практикой доказано, чем острее фокус, тем быстрее трубка приходит в негодность — происходит расплавление вольфрамовой пластинки анода. Поэтому в современных аппаратах трубки конструируются с несколькими фокусами: малым и большим, или линейным в виде узкой полосы с коррекцией угла скошенности анода в 71°, что позволяет получать оптимальную резкость изображения при наибольшей электрической нагрузке на анод.

Удачной конструкцией рентгеновской трубки является генератор с вращающимся анодом, что позволяет делать фокус незначительных размеров и удлинить тем самым срок эксплуатации аппарата.

Из потока катодных лучей только около 1% энергии превращается в рентгеновы лучи, остальная энергия переходит в тепло, что приводит к перегреванию анода. Для целей охлаждения анода используются различные способы: водяное охлаждение, калорифер-но-воздушное, масляное охлаждение под давлением и комбинированные способы.

Рентгеновская трубка помещается в специальный просвинцованный футляр или кожух с отверстием для выхода рентгеновского излучения из анода трубки. На пути выхода рентгеновского излучения из трубки устанавливаются фильтры из различных металлов, которые отсеивают мягкие лучи и делают более однородным излучение рентгеновского аппарата.

Во многих конструкциях рентгеновских аппаратов в футляр наливается трансформаторное масло, которое со всех сторон обтекает рентгеновскую трубку. Все это: металлический футляр, масло, фильтры экранируют персонал кабинета и больных от воздействия рентгеновского облучения.

- Читать далее "Устройство рентгеновских аппаратов"


Оглавление темы "Рентгенологические методы обследования":
  1. Устройство рентгеновской трубки. Принципы получения рентгеновских лучей
  2. Устройство рентгеновских аппаратов
  3. Рентгенокинематография. Рентгенотелевидение
  4. Защита от вредного влияния рентгеновых лучей. Рентгеноскопия
  5. Рентгенография. Электрорентгенография
  6. Варианты рентгеновских снимков
  7. Томография. Принципы получения снимка при томографии
  8. Поперечно осевая томография. Стереорентгенография и компьютерная томография
  9. Методы контрастирования при рентгеновском исследовании и рентгенографии движений органов
  10. Тень на рентгеновском снимке и ее формирование. Скиалогия
Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта