МедУнивер - MedUniver.com Все разделы сайта Видео по медицине Книги по медицине Форум консультаций врачей  
Рекомендуем:
Генетика:
Генетика
Аномалии хромосом
Биология клетки
Генетика врожденных пороков
Генетика рака - опухолей
Молекулярная генетика
Наследственные синдромы
Цитогенетика - исследование хромосом
Лечение наследственных болезней
Фармакогенетика
Форум
 

Внутриклеточные сигналы как биохимические логические цепи

• Сигнальные сети состоят из групп биохимических реакций, которые напоминают функции математической логики, интегрирующие информацию

• Для обработки информации на более высоком уровне комбинации таких логических функций объединяются в сигнальные сети

Как отмечалось в статьях на сайте, функции передачи сигналов, используемые для интеграции информации и ее направления к клеточным мишеням, удивительно напоминают функции математической логики, которые используются для проектирования индивидуальных цепей электронных компьютеров.

Действительно, существуют биологические эквиваленты практически всех функциональных компонентов, которые хорошо известны компьютерщикам и инженерам, занимающимся конструированием компьютеров и электронных контрольных приборов. Поэтому для того, чтобы понять, как функционируют пути передачи сигнала, полезно рассмотреть отдельные группы реакций в составе процесса как составляющие логической цепи, похожей на компьютерную.

Простейшим примером служит конвергенция двух процессов, ведущих к стимуляции. Если каждый из них генерирует сигнал, достаточный для того, чтобы вызвать ответ, то конвергенция представит функцию «ИЛИ». Если ни на одном из входов сигнал недостаточен, но комбинация обоих вызывает ответ, то конвергирующий путь создаст функцию «И». Цепи типа И также рассматриваются как детекторы совпадений, т. е. ответ генерируется только в том случае, когда одновременно активируются два пути стимуляции.

Функция И возникает в результате комбинации двух близких, но в количественном отношении неадекватных входных сигналов. Наоборот, для генерации ответа могут потребоваться оба механистически разных входных сигнала. Примером служит белок-мишень, который аллостерически активируется только при фосфорилировании, или же он активируется при фосфорилировании, но начинает функционировать только после своей транслокации в специфические внутриклеточные сайты.

Противоположность функции «И» представляет собой функция «НЕ». Она характеризуется тем, что один путь блокирует стимулирующий эффект другого. Во многих точках клеточных сигнальных путей существуют простые логические шлюзы.

Можно также предполагать существование конвергентного пути передачи сигнала в количественном, а не в булевом смысле, рассматривая аддитивность входных сигналов как отдельный процесс. Функция «ИЛИ», относящаяся к верхнему рисунку, может рассматриваться как аддитивный положительный входной сигнал от двух путей. Такая аддитивность может отражать способность двух рецепторов стимулировать пул особого G-белка, или способность двух протеинкиназ фосфорилировать один субстрат.

Аддитивность может приводить к положительному сигналу, как в примере выше, или к отрицательному, когда объединяются два ингибиторных входных сигнала. Ингибирование и стимуляция могут также объединяться аддитивно, давая на выходе алгебраически сбалансированный сигнал. Наоборот, множественные входные сигналы способны объединяться, давая суммарный сигнал больше или меньше аддитивного. Обсуждавшаяся выше Функция НЕТ аналогична описывающей блокаду стимуляции.Функция И описывает синергизм, при котором один входной сигнал потенцирует другой, но сам по себе дает небольшой эффект.

Даже для простой сигнальной сети характерна сложная схема обработки информации. Хорошим примером служит создание «памяти»: преобразование эффекта временного сигнала в более или менее постоянный. Системы передачи располагают множеством механизмов формирования памяти и забывания сигнала. Один из механизмов, общий для протеинкиназного пути, представляет собой цикл положительной обратной связи, и представлен в верхней части рисунка ниже. В этом цикле сигнал на входе стимулирует передатчик (Т), который, в свою очередь, активирует эффекторный белок (Е), формирующий выходной сигнал.

Если эффектор также может стимулировать передатчик, то часть начального сигнала может передаваться на передатчик. При этом передатчик может обеспечивать появление на выходе полного сигнала эффектора, даже при отсутствии входного сигнала. Как показано на рисунке ниже справа, для такой системы обычно характерно существование порогового эффекта.

Положительная опережающая связь может генерировать память другого типа, которая отмечает продолжительность входного сигнала. В таких цепях эффектору необходимы одновременные входные сигналы от рецептора и от промежуточного передатчика. Если путь передачи сигнала от рецептора через передатчик относительно медленный или же необходимо накопление значительных количеств передатчика, ответ включится только при продолжительном сигнале. Это показано на временной диграмме выходного сигнала справа.

Третий путь запоминания представляет собой разрешение одному входному сигналу контролировать обратимость второго регуляторного события. Белок WASP, который инициирует полимеризацию актина, обеспечивающую подвижность клетки и изменение ее формы, активируется при фосфорилировании и при связывании с Cdc42, который представляет собой небольшой ГТФ-связывающий белок (G). Однако фосфорилированный сайт на WASP открывается только после его связывания с Cdc42. Таким образом, для фосфорилирования требуется активированный Cdc42 и активированная протеинкиназа.

Если Cdc42 диссоциирует, фосфорилированное состояние WASP поддерживается до тех пор, пока с ним опять не свяжется другая сигнальная молекула, природа которой неизвестна. При этом снова откроется сайт для протеинфосфатазы. Как представлено на графике временной заисимости, связывание с Cdc42 приводит к активирующему эффекту, а связывание только с киназой не оказывает такого действия. Если присутствует Cdc42, то киназа может активировать WASP. Фосфо-WASP относительно устойчив к одной протеинфосфатазе (Р), однако он дефосфорилируется, если Cdc42 или другой G-белок связывается с ним и открывает сайт для фосфатазы.

Простые логические цепи
Для обработки поступающей информации сигнальные сети используют простые логические функции.
Булевы функции «ИЛИ», «И» и «НЕ» (слева) соответствуют количественным взаимоотношениям между конвергирующими сигналами, представленными справа.
Цепи обработки сигнала
Относительно сложный процесс обработки сигнала осуществляется с помощью простых мультибелковых модулей.
На рисунке представлены три типа сигнальных модулей (слева) и их реакция на присутствие агонистов (справа), (сверху)
В модуле положительной обратной связи белок-передатчик (Т) стимулирует эффектор (Е), который продуцирует сигнал на выходе.
Однако эффектор также стимулирует активность передатчика. В результате образуется выключатель типа «все или ничего».
При этом входной сигнал, величина которого не превышает определенного порогового значения, оказывается малоэффективным.
Однако эффективность сигнала резко возрастает, когда обратной связи с эффектором достаточно для поддержания активности передатчика, даже в отсутствие генерации постоянного входного сигнала от рецептора. (в центре)
В положительном опережающем модуле эффектор принимает сигналы от передатчика и от элементов, расположенных перед ним.
Когда стимуляция носит кратковременный характер (короткая горизонтальная полоса под графиком справа), накопления существенных количеств активного передатчика не происходит, и сигнал на выходе достигает минимальной величины.
При более продолжительной стимуляции (длинная горизонтальная полоса) на выходе получается более сильный сигнал, (внизу).
В некоторых модулях переключения двойного контроля, связывание одного регулятора (G) активирует эффектор и демаскирует другой регуляторный сайт, показанный на рис. как сайт Ser субстрата (-ОН) протеинкиназы.
Эффектор может фосфорилироваться или дефосфорилироваться только в том случае, когда он связан с G-белком.
Поэтому, как показано на рисунке справа, добавление одного G будет оказывать активирующий эффект, однако активации одной киназы (К) наблюдаться не будет.
Если киназа активна, пока она связана с белком G, то фосфорилированная форма устойчива к действию фосфатазы, если только G не связался повторно и не произошло демаскирования фосфосеринового остатка (показан на графике справа буквой Р).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

- Также рекомендуем "Пути передачи сигнала каркасных структур клетки"

Оглавление темы "Внутриклеточные системы передачи сигнала":
  1. Строение и функции рецепторов клетки
  2. Рецепторы как катализаторы и амплификаторы
  3. Механизм изменения конформации рецептора лигандом
  4. Механизм дивергенции и конвергенции внутриклеточных сигналов
  5. Внутриклеточные сигналы как биохимические логические цепи
  6. Пути передачи сигнала каркасных структур клетки
  7. Модульные домены в передаче сигнала клетки
  8. Механизмы адаптации путей передачи сигнала клетки
  9. Формы сигнальных белков клетки
  10. Механизмы контроля реакций активации и инактивации сигнальными белками
Медунивер Мы в Telegram Мы в YouTube Мы в VK Форум консультаций врачей Контакты, реклама
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.