MedUniver Хирургия
  Домой Медицинский фото атлас Психология отношений Медицинские видео ролики Медицинская библиотека Консультация врача  
Неотложная хирургия:
Неотложная хирургия
Анестезиология
Детская хирургия
Перед операцией.
Операция.
Переливание крови.
После операции.
Сочетанная травма.
Эндохирургия.
Травма и хирургия кисти
Хирургия груди:
Хирургия груди
Хирургия легких
Фтизиохирургия
Хирургия туберкулеза
Хирургия рака легкого
Торакопластика
Травма грудной клетки - груди
Книги по торакальной хирургии
Хирургия живота:
Хирургия живота.
Хирургия печени.
Хирургия pancreas.
Хирургия желудка.
Хирургия прямой кишки.
Травма живота
Книги по хирургии
Рекомендуем:
Остальные разделы:
Абдоминальная хирургия
Анатомия человека
Акушерство
Биология
Генетика
Гепатология
Гигиена труда
Гинекология
Гистология
Дерматология
Оз и Оз
Кардиология
Лучевая медицина
Микробиология
Неврология
Неотложная хирургия
Отоларингология
Офтальмология
Профилактика заболеваний
Психология
Пульмонология
Физиология человека
Скорая помощь
Стоматология
Топографическая анатомия
Травматология
Фармакология
Необходимое:
Книги по медицине
Видео по медицине
Фотографии по медицине
Консультации врачей
Форум
 

Оптические оксиметры. Устройство пульсового оксиметра

В основе принципа действия этих приборов лежит регистрация мощности определенного частотного спектра световой волны, генерируемой излучателем и воспринимаемой фотоприемником после ее прохождения через исследуемый объект. Длина волны излучателя выбирается таким образом, чтобы она максимально поглощалась (отражалась) оксигемоглобином и гемоглобином и мало поглощалась остальными тканями. Наиболее полно таким требованиям удовлетворяет красный и ближний инфракрасный свет.

Как было указано выше, оптические анализаторы по принципу анализа подразделяются на регистрирующие поглощение (абсорбционные) и отражение (отражательные) части измененной мощности волны после прохождения ее через исследуемый объект.

В приборе анализируется поглощение (абсорбция), или отражение световой волны различного частотного спектра окисленным гемоглобином и редуцированным (восстановленным, дезокси) гемоглобином. В соответствии с законом Бера, рассчитываются коэффициенты поглощения света.

K = К1*К2,
где К— суммарный коэффициент поглощения,
К1 — коэффициент поглощения света оксигемоглобином,
К2— коэффициент поглощения света восстановленным гемоглобином.

устройство оксиметра

В технологии, основанной на эффекте отражения света, расчет осуществляется приблизительно таким же образом. Только вместо коэффициента поглощения (абсорбции) света рассчитывается коэффициент отражения. Эта технология еще не получила должной популярности и используется, в основном, в небольшом числе мониторов: в катетерном внутрисосудистом (венозном) и в церебральном оксиметрах. Конструкция этих мониторов принципиально мало отличается от мониторов, построенных на принципе абсорбции.

Спектральные абсорбционные оксиметры подразделяется на 2 вида, имеющие принципиальные отличия в том, что в одном из них метод расчета построен на анализе пульсирующего кровотока (пульсоксиметры), в другом эффект пульсации артериальной крови не используется.
В большинстве современных оксиметров, используемых в практической медицине, применяется пульсовая технология. Лишь транскутанные церебральные оксиметры построены на принципе непульсовой отражательной технологии.

Поскольку в подавляющем числе оксиметров, применяющихся в практическом здравоохранении, используется спектральная технология, необходимо хотя бы кратко ознакомить пользователя и техников сервисных центров с теоретическими основами этой технологии.

Устройство пульсового оксиметра

В основе большинства современных пульсовых оксиметров лежит метод двухполосной абсорбционной спектроскопии. Теоретическое обоснование этого метода, как указано выше, принадлежит Takuo Aoyagi.
Типовая структурная схема пульсового оксиметра, построенного по этому методу, приведена на рисунке. Часть элементов конструкции прибора (излучатели и фотоприемник) расположены в датчике. Разными фирмами выпускается множество разновидностей датчиков.

Свет, прошедший через насыщенные артериальной кровью ткани пациента, воспринимается фотоприемником датчика. Красный и инфракрасный светодиоды, как правило, работают поочередно, кроме того, обычно предусматривается фаза, когда оба светодиода погашены. Но частота смены фаз столь велика, что при взгляде на включенный датчик создается впечатление о непрерывном свечении.
Фотоприемник датчика, обычно это фотодиод, воспринимает световые волны с частотами, соответствующими красному (К) и инфракрасному (ИК) свету.

Предполагается, что интенсивность поглощения света остальными тканями (кроме артериальной крови) является величиной постоянной, не изменяющейся у конкретного человека на протяжении времени исследования. Сигнал пульсовой волны создается только пульсирующей артериальной кровью. Он изменяется (затухает) по мере наполнения микрососудов кровью во время систолы и увеличивается во время диастолы.

- Читать далее "Фотоплетизмограмма. Погрешность пульсоксиметров"


Оглавление темы "Гемодинамика и пульсоксметрия":
1. Факторы влияющие на венозный приток и сердечный выброс. Положительное давление в конце вдоха (ПДКВ)
2. Влияние высокочастотной вентиляции на сердце. Влияние ВЧ ИВЛ на кровоток
3. Газообмен и гемодинамика после пневмэктомии. Реакция гемодинамики на CPAP
4. Физиология сердечного выброса. Что влияет на сердечный выброс во время операции?
5. Изменение сопротивления кровотоку и частоты сердечных сокращений. Физиология клапанного аппарата сердца
6. Виды оксигемометрии. Полярографические оксиметры
7. Оптические оксиметры. Устройство пульсового оксиметра
8. Фотоплетизмограмма. Погрешность пульсоксиметров
9. Артефакты пульсоксиметров. Методы устранения артефактов пульсоксиметров
10. Артефакты пульсоксиметра от движений пациента. Пульсоксиметры Тритон-Электроникс
Загрузка...

   
MedUniver.com
ICQ:493-344-927
E-mail: reklama@meduniver.com
   

Пользователи интересуются:

Будем рады вашим вопросам и отзывам:

Полная версия сайта